OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. S1 — May. 31, 2007
  • pp: S222–S225

Electromagnetically induced negative refractive index in dense atomic gas

Hongjun Zhang, Yueping Niu, Shiqi Jin, Ruxin Li, and Shangqing Gong  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue S1, pp. S222-S225 (2007)

View Full Text Article

Acrobat PDF (281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We propose two dense gas schemes of four-level 'Lambda'-type and V-type atoms based on the effect of quantum coherence. It is shown that under certain conditions the dense gas can simultaneously exhibit negative permittivity and negative permeability, and thus become a negative refractive-index material. Furthermore, by analyzing the absorption property of the left-handed materials, we find that the absoption can be reduced via choosing appropriate parameters. Such schemes might be used to fabricate isotropic and homogeneous left-handed material with vanishing absorption in a wider optical frequency band.

© 2007 Chinese Optics Letters

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(240.5420) Optics at surfaces : Polaritons
(260.2030) Physical optics : Dispersion

Hongjun Zhang, Yueping Niu, Shiqi Jin, Ruxin Li, and Shangqing Gong, "Electromagnetically induced negative refractive index in dense atomic gas," Chin. Opt. Lett. 5, S222-S225 (2007)

Sort:  Year  |  Journal  |  Reset


  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
  2. A. A. Zharovr, I. V. Shadrivov, and Y. S. Kivshar, J. Appl. Phys. 97, 113906 (2005).
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, Phys. Rev. Lett. 84, 4184 (2000).
  4. T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 5663, 1494 (2004).
  5. R. Shelby, D. Smith, and S. Schultz, Science 292, 77 (2001).
  6. J. Pendry, Nature 423, 22 (2003).
  7. M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, Eur. Phys. J. B 28, 263 (2002).
  8. G. Shvets, Phys. Rev. B 67, 035109 (2003).
  9. G. Dewar, Int. J. Mod. Phys. B 15, 3258 (2001).
  10. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
  11. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
  12. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. Wu, J. A. Kong, and M. Chen, Opt. Express 11, 723 (2003).
  13. J. A. Kong, B. I. Wu, and Y. Zhang, Appl. Phys. Lett. 80, 2084 (2002).
  14. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)
  15. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
  16. M. O. Oktel and O. E. Mustecapioglu, Phys. Rev. A 70, 053806 (2004).
  17. J. Shen, Z. Ruan, and S. He, J. Zhejiang Univ. Sci. 5, 1322 (2004).
  18. Q. Thommen and P. Mandel, Phys. Rev. Lett. 96, 053601 (2006).
  19. J. D. Jackson, Classical Electrodynamics (2nd edn.) (Wiley, New York, 1975) p.155.
  20. L. D. Laudau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (3rd edn.) (Pergamon, Oxford, 1977) p.440.
  21. U. Votz and Schmoranzer, Physica Scripta T65, 48 (1996).
  22. J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited