OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 6, Iss. 6 — Jun. 10, 2008
  • pp: 411–414

Enhanced spontaneous emission factor for microcavity lasers

Xiaoxia Zhang and Wei Pan  »View Author Affiliations


Chinese Optics Letters, Vol. 6, Issue 6, pp. 411-414 (2008)


View Full Text Article

Acrobat PDF (301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output properties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the increased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.

© 2008 Chinese Optics Letters

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers

Citation
Xiaoxia Zhang and Wei Pan, "Enhanced spontaneous emission factor for microcavity lasers," Chin. Opt. Lett. 6, 411-414 (2008)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-6-411


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. M. Purcell, Phys. Rev. 69, 681 (1946).
  2. E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
  3. K. J. Vahala, Nature 424, 839 (2003).
  4. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
  5. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, Electron. Lett. 28, 1010 (1992).
  6. C. J. Chang-Hansnain, Opt. Photon. News 9, (3) 34 (1998).
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 013904 (2005).
  8. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
  9. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petro, and D. Bouwmeester, Phys. Rev. Lett. 96, 127404 (2006).
  10. H. Altug, D. Englund, and J. Vuckovic, Nature Phys. 2, 484 (2006).
  11. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Tierry-Mieg, Phys. Rev. Lett. 91, 1110 (1998).
  12. H. Zheng, Chin. J. Semiconductor (in Chinese) 18, 481 (1997).
  13. H. Yokoyama and S. D. Brorson, J. Appl. Phys. 66, 4801 (1989).
  14. G. Bjorik and Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).
  15. S. Haroche and D. Kleppner, Physic Today 42, (1) 24 (1989).
  16. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (2nd edn.) (Van Nostrand Reinhold, New York, 1993) 238, 455.
  17. D. OBrien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett. 29, 1072 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited