Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 7,
  • Issue 2,
  • pp. 159-161
  • (2009)

Derivative fluorimetry analysis of new cluster structures formed by ethanol and water molecules

Not Accessible

Your library or personal account may give you access

Abstract

The ultraviolet (UV) light excited fluorescence spectra of ethanol-water mixture with different concentrations are investigated by derivative fluorimetry. It is found that there are 8 types of luminescent cluster molecules, formed by ethanol and water molecules in different ways, existing in the solution. The peak wavelengths of all these clusters' fluorescence spectra are measured and their contents are obtained by measuring the peak values in the second derivative fluorescence spectra. The spectra corresponding to the 8 types of clusters are obtained by Gaussian decomposition. It is found that two kinds of cluster molecules whose peak wavelengths are 330 and 345 nm have an optimal excitation wavelength located at (236+-3) nm. This research contributes to the study of ethanol-water cluster structures and their physical and chemical characteristics.

© 2009 Chinese Optics Letters

PDF Article
More Like This
Molecular dynamic investigation of ethanol-water mixture by terahertz-induced Kerr effect

Hang Zhao, Yong Tan, Rui Zhang, Yuejin Zhao, Cunlin Zhang, Xi-Cheng Zhang, and Liangliang Zhang
Opt. Express 29(22) 36379-36388 (2021)

Mass spectrometry of ion-induced water clusters: an explanation of the infrared continuum absorption

Hugh R. Carlon and Charles S. Harden
Appl. Opt. 19(11) 1776-1786 (1980)

Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence

Michael Storch, Susanne Lind, Stefan Will, and Lars Zigan
Appl. Opt. 55(30) 8532-8540 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.