OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 3 — Mar. 1, 2009
  • pp: 191–193

A high sensitive fiber Bragg grating strain sensor with automatic temperature compensation

Kuo Li and Zhen'an Zhou  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 3, pp. 191-193 (2009)

View Full Text Article

Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


2 A high sensitive fiber Bragg grating (FBG) strain sensor with automatic temperature compensation is demonstrated. FBG is axially linked with a stick and their free ends are fixed to the measured object. When the measured strain changes, the stick does not change in length, but the FBG does. When the temperature changes, the stick changes in length to pull the FBG to realize temperature compensation. In experiments, 1.45 times strain sensitivity of bare FBG with temperature compensation of less than 0.1 nm Bragg wavelength drift over 100 oC shift is achieved.

© 2009 Chinese Optics Letters

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.1480) Optical devices : Bragg reflectors

Kuo Li and Zhen'an Zhou, "A high sensitive fiber Bragg grating strain sensor with automatic temperature compensation," Chin. Opt. Lett. 7, 191-193 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
  3. G. A. Ball, W. W. Morey, and P. K. Cheo, J. Lightwave Technol. 12, 700 (1994).
  4. M. Song, S. Yin, and P. B. Ruffin, Appl. Opt. 39, 1106 (2000).
  5. Y. Zhan, S. Xue, and Q. Yang, Chin. Opt. Lett. 5, 135 (2007).
  6. S. Kim, J. Kwon, S. Kim, and B. Lee, IEEE Photon. Technol. Lett. 12, 678 (2000).
  7. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, IEEE Photon. Technol. Lett. 10, 1461 (1998).
  8. R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, Electron. Lett. 33, 705 (1997).
  9. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, Electron. Lett. 31, 823 (1995).
  10. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
  11. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, Appl. Opt. 34, 6859 (1995).
  12. K. Li, Z. Zhou, A. Liu, and X. Wang, Acta Opt. Sin. (in Chinese) 29, 249 (2009).
  13. K. Li, Z. Zhou, and A. Liu, Prog. Geophys. (in Chinese) 23, 1322 (2008).
  14. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, Appl. Opt. 38, 2752 (1999).
  15. K. Li, Z. Zhou, and A. Liu, Chin. Opt. Lett. 7, 121 (2009).
  16. W. W. Morey and W. L. Glomb, "Incorporated Bragg filter temperature compensated optical waveguide device" U.S. patent 5,042,898 (August 27, 1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited