OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 7, Iss. 4 — Apr. 1, 2009
  • pp: 286–290

Reverse current reduction of Ge photodiodes on Si without post-growth annealing

Sungbong Park, Shinya Takita, Yasuhiko Ishikawa, Jiro Osaka, and Kazumi Wada  »View Author Affiliations

Chinese Optics Letters, Vol. 7, Issue 4, pp. 286-290 (2009)

View Full Text Article

Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A new approach to reduce the reverse current of Ge pin photodiodes on Si is presented, in which an i-Si layer is inserted between Ge and top Si layers to reduce the electric field in the Ge layer. Without post-growth annealing, the reverse current density is reduced to ~10 mA/cm2 at -1 V, i.e., over one order of magnitude lower than that of the reference photodiode without i-Si layer. However, the responsivity of the photodiodes is not severely compromised. This lowered-reverse-current is explained by band-pinning at the i-Si/i-Ge interface. Barrier lowering mechanism induced by E-field is also discussed. The presented "non-thermal" approach to reduce reverse current should accelerate electronics-photonics convergence by using Ge on the Si complementary metal oxide semiconductor (CMOS) platform.

© 2009 Chinese Optics Letters

OCIS Codes
(040.0040) Detectors : Detectors

Sungbong Park, Shinya Takita, Yasuhiko Ishikawa, Jiro Osaka, and Kazumi Wada, "Reverse current reduction of Ge photodiodes on Si without post-growth annealing," Chin. Opt. Lett. 7, 286-290 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Wada, J. F. Liu, S. Jongthammanurak, D. D. Cannon, D. T. Danielson, D. H. Ahn, S. Akiyama, M. Popovic, D. R. Lim, K. K. Lee, H.-C. Luan, Y. Ishikawa, J. Michel, H. A. Haus, and L. C. Kimerling, "Si microphotonics for optical interconnection" in Optical Interconnects L. Pavesi and L. Guillot (eds.) (Springer, Berlin, 2006) Chap.11, pp.291-310.
  2. M. J. Kobinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, Intel Technol. J. 8, 129 (2004).
  3. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, Opt. Express 15, 9843 (2007).
  4. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kartner, Opt. Express 15, 3916 (2007).
  5. L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett. 78, 541 (2001).
  6. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
  7. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, Appl. Phys. Lett. 87, 011110 (2005).
  8. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).
  9. Z. Huang, N. Kong, X. Guo, M. Liu, N. Duan, A. L. Beck, S. K. Banerjee, and J. C. Campbell, IEEE J. Sel. Top. Quantum Electron. 12, 1450 (2006).
  10. G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (1979).
  11. H.-D. Lee, IEEE Trans. Electron Devices 47, 762 (2000).
  12. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, IEEE Trans. Electron Devices 39, 331 (1992).
  13. A. Poyai, E. Simoen, and C. Claeys, IEEE Trans. Electron Devices 48, 2445 (2001).
  14. S. Famà, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, Appl. Phys. Lett. 81, 586 (2002).
  15. L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, Appl. Phys. Lett. 88, 101111 (2006).
  16. W. G. Oldham and A. G. Milnes, Solid-State Electron. 7, 153 (1964).
  17. G. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, IEEE Trans. Electron Devices 48, 1092 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited