OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 10 — Oct. 1, 2010
  • pp: 937–939

Spectral imaging of time-resolved anisotropy: theory and experiment

Yanzhou Zhou, Qingruo Wang, Jingsong He, and Lerong Lin  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 10, pp. 937-939 (2010)

View Full Text Article

Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Time-resolved fluorescence anisotropy on the nanosecond time scale is useful for the study of the rapid rotation of macromolecules. A system combining the capabilities of fluorescence spectral imaging with time-resolved fluorescence anisotropy and enabling the wide-field measurement of the spectroscopic parameters of fluorophores is discussed. The phasor approach is used to quantitatively analyze the time-resolved fluorescence anisotropy by transforming the polarized parallel and perpendicular components to the phasor space in the frequency domain, respectively, and a unique way to calculate the fluorescence rotational correlation time is put forward. Experimental results prove that the phasor approach is a proper model for the time-resolved fluorescence anisotropy.

© 2010 Chinese Optics Letters

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Yanzhou Zhou, Qingruo Wang, Jingsong He, and Lerong Lin, "Spectral imaging of time-resolved anisotropy: theory and experiment," Chin. Opt. Lett. 8, 937-939 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
  2. T. Yun, N. Zeng, W. Li, and H. Ma, Acta Opt. Sin. (in Chinese) 29, 1926 (2009).
  3. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, Biophys. J. 83, 1631(2002).
  4. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, Rev. Sci. Instrum. 74, 182 (2003).
  5. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Leveque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, Opt. Lett. 29, 584 (2004).
  6. Y. Zhou, J. M. Dickenson, and Q. S. Hanley, J. Microsc.-Oxford 234, 80 (2009).
  7. Y. Zhou, L. Wu, Q. Wang, and Y. Wang, J. Fluoresc. doi: 10.1007/s10895-010-0683-4 (2010).
  8. D. M. Jameson, E. Gratton, and R. D. Hall, Appl. Spectrosc. Rev. 20, 55 (1984).
  9. A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, J. Microsc.-Oxford 213, 1 (2004).
  10. A. H. A. Clayton, J. Microsc.-Oxford 232, 306 (2008).
  11. Y. Li, Y. Zhang, J. Liu, Z. Rong, L. Zhang, and Y. Zhang, Acta Opt. Sin. (in Chinese) 29, 41 (2009).
  12. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, Biophys. J. 94, L14 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited