OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 8, Iss. 2 — Feb. 1, 2010
  • pp: 173–176

Artificial neural network method for determining optical properties from double-integrating-spheres measurements

Chenxi Li, Huijuan Zhao, Qiuyin Wang, and Kexin Xu  »View Author Affiliations

Chinese Optics Letters, Vol. 8, Issue 2, pp. 173-176 (2010)

View Full Text Article

Acrobat PDF (807 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Accurate measurement of the optical properties of biological tissue is very important for optical diagnosis and therapeutics. An artificial neural network (ANN)-based inverse reconstruction method is introduced to determine the optical properties of turbid media, which is based on the reflectance (R) and transmittance (T) of a thin sample measured by a double-integrating-spheres system. The accuracy and robustness of the method has been validated, and the results show that the root mean square errors (RMSEs) of the absorption coefficient \mu a and scattering coefficient \mu' s reconstruction are less than 0.01 cm-1 and 0.02 cm-1, respectively. The algorithm is not only very accurate in the case of a lower albedo (~0.33), but also very robust to the noise of R and T especially for the \mu' s reconstruction.

© 2010 Chinese Optics Letters

OCIS Codes
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(300.1030) Spectroscopy : Absorption

Chenxi Li, Huijuan Zhao, Qiuyin Wang, and Kexin Xu, "Artificial neural network method for determining optical properties from double-integrating-spheres measurements," Chin. Opt. Lett. 8, 173-176 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, and J. N. Wilke, J. Biomed. Opt. 8, 2 (2003).
  2. G. M. Palmer and N. Ramanujam, Appl. Opt. 45, 5 (2006).
  3. H. Zhao, X. Zhou, J. Liang, and S. Zhang, Chin. Opt. Lett. 6, 12 (2008).
  4. F. Gao, L. Zhang, J. Li, and H. Zhao, Chin. Opt. Lett. 6, 12 (2008).
  5. A. Kienle, M. S. Patterson, R. Bays, G. Wagnieres, and H. Bergh, Appl. Opt. 37, 4 (1998).
  6. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, J. Biomed. Opt. 13, 5 (2008).
  7. J. W. Pickering, S. A. Prahl, N. V. Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, Appl. Opt. 32, 4 (1993).
  8. D. Zhu, W. Lu, S. Zeng, and Q. Luo, J. Biomed. Opt. 12, 6 (2007).
  9. J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. A. Engels, Appl. Opt. 39, 7 (2000).
  10. L. Wang, S. L. Jacques, and L. Zheng, Comput. Meth. Programs Biomed. 47, 131 (1995).
  11. J. S. Judd and J. Stephen, Neural Network Design and the Complexity of Learning (The MIT Press, Cambridge, 1990).
  12. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, Appl. Opt. 30, 31 (1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited