OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 9, Iss. 11 — Nov. 1, 2011
  • pp: 110004–

Recent progress on terahertz generation based on difference frequency generation: from power scaling to compact and portable sources (Invited Paper)

Yujie J. Ding, Pu Zhao, Srinivasa Ragam, Da Li, and Ioulia B. Zotova  »View Author Affiliations


Chinese Optics Letters, Vol. 9, Issue 11, pp. 110004- (2011)


View Full Text Article

Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The progress achieved on power scaling and compact and portable THz sources is reviewed. By reversely stacking the GaP plates, the photon conversion efficiency is improved from 25% to 40% which corresponds to the maximum value. When the number of the plates is increased from four to five, the output power decreases because of back conversion. The THz generation is also investigated by mixing the two frequencies generated by a single Nd:YLF solid-state laser. The average output power reaches 1 \mu W. The introduction of two Nd:YLF crystals significantly improves the output power to 4.5 µW. This configuration facilitates the generation of different output frequencies.

© 2011 Chinese Optics Letters

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Sources and mechanisms of terahertz radiation

Citation
Yujie J. Ding, Pu Zhao, Srinivasa Ragam, Da Li, and Ioulia B. Zotova, "Recent progress on terahertz generation based on difference frequency generation: from power scaling to compact and portable sources (Invited Paper)," Chin. Opt. Lett. 9, 110004- (2011)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-9-11-110004


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Gordy and R. L. Cook, Microwave Molecular Spectra (Jchn Wiley & Sons, New York, 1984).
  2. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, in Handbook of Optics, W. G. Driscoll (eds.), (McGraw Hill, New York, 1978).
  3. A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, and D. Woolard, Int. J. High Speed Electron. Syst. 17, 225 (2007).
  4. A. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 89, 141125 (2006).
  5. L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
  6. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
  7. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
  8. K. P. Cheung and D. H. Auston, Infrared Phys. 26, 23 (1986).
  9. M. van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
  10. H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, Opt. Exp. 14, 415 (2006).
  11. D. M. Mittleman, S. Hunnsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997).
  12. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
  13. W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, Opt. Lett. 27, 1454 (2002).
  14. W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).
  15. W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
  16. W. Shi and Y. J. Ding, Optics and Photonics New 57 (2002).
  17. W. Shi and Y. J. Ding, Appl. Phys. Lett. 83, 848 (2003).
  18. W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
  19. W. Shi and Y. J. Ding, Opt. Lett. 30, 1030 (2005).
  20. Y. J. Ding and W. Shi, Sol. State Electron. 50, 1128 (2006).
  21. W. Shi, X. Mu, Y. J. Ding, and N. Fernelius, Appl. Phys. Lett. 80, 3889 (2002).
  22. W. Shi and Y. J. Ding, Laser Phys. Lett. 1, 560 (2004).
  23. H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
  24. H. Sun, Y. J. Ding, and Y. B. Zotova, Appl. Opt. 46, 3976 (2007).
  25. R. Song, Y. J. Ding, and Y. B. Zotova, Intern. J. High Speed Electron. Syst. 17, 251 (2007).
  26. R. Song, Y. J. Ding, and I. B. Zotova, Proc SPIE 6949, 694903 (2008).
  27. Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
  28. Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, Opt. Lett. 36, 1608 (2011).
  29. P. Zhao, S. R. Ragam, Y. J. Ding, and I. B. Zotova, Opt. Lett. 35, 3979 (2010).
  30. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 98, 131106 (2011).
  31. L. P. Gonzalez, S. Guha, and S. Trivedi, in Proceedings of CLEO Technical Digest on CD-ROM CWA47 (2004).
  32. F. L. Madarasz, J. O. Dimmock, N. Dietz, and J. Bachmann, J. Appl. Phys. 87, 1564 (2000).
  33. D. N. Nikogosyan, Nonlinear Optical Crystals (Springer, New York, 2005).
  34. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1989) p. 399.
  35. B. Frei and J. E. Balmer, Appl. Opt. 33, 6942 (1994).
  36. H. Zbinden and J. E. Balmer, Opt. Lett. 15, 1014 (1990).
  37. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, Opt. Express 17, 6004 (2009).
  38. W. Koechner and M. Bass, Solid-State Lasers (Springer, New York, 2003) pp. 63-65.
  39. F. Trager (eds.), Handbook of Lasers and Optics (Springer, New York, 2007).
  40. Y. Avetisyan, Y. Sasaki, and H. Ito, Appl. Phys. B 73, 511 (2001).
  41. Y. J. Ding, Opt. Lett. 35, 262 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited