Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 1,
  • Issue 10,
  • pp. 591-593
  • (2003)

A novel super-broadband travelling-wave modulator with nonperiodic domain inversions and ridge structure

Not Accessible

Your library or personal account may give you access

Abstract

In order to obtain large broadband, a novel travelling-wave modulator with nonperiodic domain inversions and ridge structure is proposed. The composite structure is designed to achieve velocity matching between the optical wave and the microwave, to get a 50 ? characteristic impedance and to reduce the loss of the microwave electrodes with finite element method (FEM). The calculation results show that the frequency response of the new device is flat up to 350 GHz with interaction length of 1 cm, characteristic impedance of 49 ?, and microwave refractive index of 2.5.

© 2005 Chinese Optics Letters

PDF Article
More Like This
Equivalent circuit model of the traveling wave electrode for lithium niobate thin film Mach–Zehnder modulators

Yanting Guo, Lianyan Li, Yunshan Zhang, Shiyuan Sun, Qihong Quan, and Yuechun Shi
Appl. Opt. 63(3) 617-623 (2024)

Sub-terahertz bandwidth capactively-loaded thin-film lithium niobate electro-optic modulators based on an undercut structure

Xuecheng Liu, Bing Xiong, Changzheng Sun, Jian Wang, Zhibiao Hao, Lai Wang, Yanjun Han, Hongtao Li, and Yi Luo
Opt. Express 29(25) 41798-41807 (2021)

Broadband optical modulator of fiber type

Jiusheng Li and Sailing He
Opt. Express 13(3) 842-846 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.