OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 1, Iss. 11 — Nov. 20, 2003
  • pp: 674–676

Design and numerical simulation of novel DBRs

Wei Su, Jingchang Zhong, Wenli Liu, Yan-Kuin Su, Shoou-Jinn Chang, Hsin-Chieh Yu, Liangwen Ji, Lin Li, and Yingjie Zhao  »View Author Affiliations

Chinese Optics Letters, Vol. 1, Issue 11, pp. 674-676 (2003)

View Full Text Article

Acrobat PDF (419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, a numerical simulation of the traditional graded distributed Bragg reflector (DBR) and a design of the novel DBR with short period superlattices (SPSs DBR) used by vertical cavity surface emitting laser (VCSEL) are reported. First, the optical characteristic matrix of the graded DBRs is derived using the theories of thin film optics. Second, its reflective spectrum is numerical simulated and it is found that the simulative results are similar with the experimental data. The difference of the cavity mode position between the experimental and simulative data is discussed. Finally, based on the simulative results of graded DBR, a novel DBR with 4.5-pair GaAs/AlAs SPSs is designed, and its reflective spectrumis numerical simulated and analyzed.

© 2005 Chinese Optics Letters

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.6000) Materials : Semiconductor materials
(230.1480) Optical devices : Bragg reflectors
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(310.6860) Thin films : Thin films, optical properties

Wei Su, Jingchang Zhong, Wenli Liu, Yan-Kuin Su, Shoou-Jinn Chang, Hsin-Chieh Yu, Liangwen Ji, Lin Li, and Yingjie Zhao, "Design and numerical simulation of novel DBRs," Chin. Opt. Lett. 1, 674-676 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, Jpn. J. Appl. Phys. 18, 2329 (1979).
  2. Y.-K. Su, J. Zhong, and S.-J. Chang, IEEE Photon. Technol. Lett. 14, 1388 (2002).
  3. H. C. Schneider, A. J. Fischer, W. W. Chow, and J. F. Klem, Appl. Phys. Lett. 78, 3391 (2001).
  4. M. Zorn, A. Knigge, N.Zeimer, A. Klein, H. Kissel, M. Weyers, and G. Trankle, J. Crystal Growth 248, 186 (2003).
  5. M. Osinski and G. A. Smolyakov, Proc. SPIE 3896, 143 (1999).
  6. G. A. Smolyakov, V. A. Smagley, W. Nakwaski, P. G. Eliseev, and M. Osinski, Proc. SPIE 3625, 383 (1999).
  7. W. Nakwaski and M. Osinski, Proc. SPIE 2146, 365 (1994).
  8. H. Wenzel and H.-J. Wunsche, IEEE J. Quantum Electron. 33, 1156 (1997).
  9. C.-H. Lin, J. M. Meese, M. L. Wroge, and C.-J. Weng, IEEE Photon. Technol. Lett. 6, 623 (1994).
  10. M. C. Y. Chan, P. C. K. Kwok, and E. H. Li, IEEE J. Select. Topics Quantum Electron. 4, 685 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited