OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 1, Iss. 12 — Dec. 20, 2003
  • pp: 719–721

Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin

Guangyong Zhou, Michael James Ventura, and Min Gu  »View Author Affiliations

Chinese Optics Letters, Vol. 1, Issue 12, pp. 719-721 (2003)

View Full Text Article

Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the ?-M direction.

© 2005 Chinese Optics Letters

OCIS Codes
(160.5470) Materials : Polymers
(230.4000) Optical devices : Microstructure fabrication
(300.6340) Spectroscopy : Spectroscopy, infrared

Guangyong Zhou, Michael James Ventura, and Min Gu, "Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin," Chin. Opt. Lett. 1, 719-721 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
  4. Z. Y. Li and Z. Q. Zhang, Phys. Rev. B 63, 1516 (2000).
  5. H. S. Sozuer and J. W. Haus, J. Opt. Soc. Am. B 10, 296 (1993).
  6. B. Temelkuran, C. M. Soukoulis, and K. M. Ho, Appl. Phys. A 66, 363 (1998).
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Simth, T. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
  8. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, and A. Polman, J. Vac. Sci. Tech. B 17, 2734 (1999).
  9. H. Y. Ryu, H. G. Park, and Y. H. Lee, IEEE J. Sel. Top. Quantum Elctron. 8, 891 (2002).
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
  11. E. Chow, S. Y. Lin, S. G. Hohnson, P. R. Villeneuve, J. D. Hoannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
  12. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, Phys. Rev. Lett. 86, 2289 (2001).
  13. M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
  14. M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited