OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 1, Iss. 8 — Aug. 20, 2003
  • pp: 468–471

A novel wide-dynamic-range logarithmic-response bipolar junction photogate transistor for CMOS imagers

Xiangliang Jin, Jie Chen, and Yulin Qiu  »View Author Affiliations

Chinese Optics Letters, Vol. 1, Issue 8, pp. 468-471 (2003)

View Full Text Article

Acrobat PDF (734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, a new photodetector, bipolar junction photogate transistor (BJPG), is proposed for CMOS imagers. Due to an injection p^(+)n junction introduced, the photo-charges drift through the p^(+)n junction by the applied electronic field, and on the other hand, the p^(+)n junction injects the carriers into the channel to carry the photo-charges. Therefore this device can increase the readout rate of the pixel signal charges and the photoelectron transferring efficiency. Using this new device, a new type of logarithmic pixel circuit is obtained with a wide dynamic range which makes photo-detector more suitable for imaging the naturally illuminated scenes. The simulations show that the photo current density of BJPG increases logarithmically with the incident light power due to the introduced injection p+n junction. The noise characteristics ofBJPG are analyzed in detail and a new gate-induced noise is proposed. Based on the established numerical analytical model of noise, the power spectrum density curves are simulated.

© 2005 Chinese Optics Letters

OCIS Codes
(230.0230) Optical devices : Optical devices
(250.0250) Optoelectronics : Optoelectronics

Xiangliang Jin, Jie Chen, and Yulin Qiu, "A novel wide-dynamic-range logarithmic-response bipolar junction photogate transistor for CMOS imagers," Chin. Opt. Lett. 1, 468-471 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. R. Fossum, IEEE Trans. on Electron. Devices 44, 1689 (1997).
  2. D. X. D. Yang, A. E. Gamal, B. Fowler, and H. Tian, IEEE J. Solid-State Circuits 34, 1821 (1999).
  3. S. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, IEEE J. Solid-State Circuits 33, 2081 (1998).
  4. S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bogaerts, IEEE J. Solid-State Circuits 35, 1146 (2000).
  5. S. Collins, J. Ngole, and G. F. Marshall, Electron. Lett. 36, 1806 (2000).
  6. M. Schanz, W. Brockherde, R. Hauschild, B. J. Hosticka, and M. Schwarz, IEEE Trans. on Electron. Devices 44, 1699 (1997).
  7. J. Chang, A. Abidi, and C. Viswanathan, IEEE Trans. on Electron. Devices 41, 1965 (1994).
  8. H. Tian, B. Fowler, and A. E. Gamal, IEEE J. Solid- State Circuits 36, 92 (2001).
  9. H. S. Lee and L. G. Heller, IEEE Trans. on Electron. Devices ED-19, 1270 (1972).
  10. K. K. Hung, K. K. Ping, C. M. Hu, and Y. C. Cheng, IEEE Trans. on Electron. Devices ED-37, 654 (1990).
  11. D. F. Barbe, Electron. Lett. 8, 207 (1972).
  12. M. F. Tompsett, IEEE Trans. on Electron. Devices ED-20, 45 (1973).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited