OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 10 — Oct. 1, 2012
  • pp: 101602–101602

Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives

Liang Li, Yiqun Wu, and Yang Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 10, Issue 10, pp. 101602-101602 (2012)

View Full Text Article

Acrobat PDF (580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates. Their nonlinear absorption properties are investigated by using a 120-fs, 800-nm Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate. The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system. These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm. The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4·s/photon, respectively. The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed. The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

© 2012 Chinese Optics Letters

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4180) Nonlinear optics : Multiphoton processes
(310.6860) Thin films : Thin films, optical properties
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:

Liang Li, Yiqun Wu, and Yang Wang, "Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives," Chin. Opt. Lett. 10, 101602-101602 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
  2. H. Stiel, K. Teuchner, A. Paul, W. Freyer, and D. Leupold, J. Photochem. Photobiol. A 80, 289 (1994).
  3. W. Fisher, W. Partridge Jr, C. Dees, and E. Wachter, Photochem. Photobiol. 66, 141 (1997).
  4. P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, L. Nikolajsen, E. Skovsen, M. Jorgensen, K. V. Mikkelsen, and P. R. Ogilby, J. Am. Chem. Soc. 127, 255 (2005).
  5. M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb, and B. C. Wilson, Photochem. Photobiol. 83, 1441 (2007).
  6. Y. Lu, F. Hasegawa, T. Goto, S. Ohkuma, S. Fukuhara, Y. Kawazu, K. Totani, T. Yamashita, and T. Watanabe, J. Mater. Chem. 14, 75 (2004).
  7. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, Angewandte Chemie 119, 6352 (2007).
  8. H. M. Kim and B. R. Cho, Accounts. Chem. Res. 42, 863 (2009).
  9. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
  10. S. Kawata and Y. Kawata, Chem. Rev. 100, 1777 (2000).
  11. C. W. Spangler, J. Mater. Chem. 9, 2013 (1999).
  12. T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. He, J. Swiatkiewicz, H. Pudavar, and P. Prasad, Polymers for Photonics Applications II 157 (2003).
  13. H. P. Zhou, D. M. Li, J. Z. Zhang, Y. M. Zhu, J. Y. Wu, Z. J. Hu, J. X. Yang, G. B. Xu, Y. P. Tian, and Y. Xie, Chem. Phys. 322, 459 (2006).
  14. L. Li, Y. Wu, Q. Zhou, and C. He, J. Phys. Org. Chem. (2011).
  15. C. Katan, F. Terenziani, O. Mongin, M. H. V. Werts, L. Porres, T. Pons, J. Mertz, S. Tretiak, and M. Blanchard-Desce, J. Phys. Chem. A 109, 3024 (2005).
  16. G. Ramakrishna and T. Goodson III, J. Phys. Chem. A 111, 993 (2007).
  17. P. C. Ray and Z. Sainudeen, J. Phys. Chem. A 110, 12342 (2006).
  18. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, J. Phys. Chem. B 110, 9802 (2006).
  19. T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, J. Am. Chem. Soc. 128, 1700 (2006).
  20. A. R. Morales, K. D. Belfield, J. M. Hales, E. W. Van Stryland, and D. J. Hagan, Chem. Mater. 18, 4972 (2006).
  21. R. Fortrie, R. Anemian, O. Stephan, J. C. Mulatier, P. L. Baldeck, C. Andraud, and H. Chermette, J. Phys. Chem. C 111, 2270 (2007).
  22. J. E. Rogers, J. E. Slagle, D. G. McLean, R. L. Sutherland, M. C. Brant, J. Heinrichs, R. Jakubiak, R. Kannan, L. S. Tan, and P. A. Fleitz, J. Phys. Chem. A 111, 1899 (2007).
  23. W. J. Yang, M. S. Seo, X. Q. Wang, S. J. Jeon, and B. R. Cho, J. Fluoresc. 18, 403 (2008).
  24. H. C. Zhang, E. Q. Guo, Y. L. Zhang, P. H. Ren, and W. J. Yang, Chem. Mater. 21, 5125 (2009).
  25. O. Kwon, S. Barlow, S. A. Odom, L. Beverina, N. J. Thompson, E. Zojer, J. L. Bredas, and S. R. Marder, J. Phys. Chem. A 109, 9346 (2005).
  26. G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, Opt. Lett. 20, 1524 (1995).
  27. C. Xu and W. W. Webb, J. Opt. Soc. Am. B 13, 481 (1996).
  28. R. R. Tykwinski, K. Kamada, D. Bykowski, F. A. Hegmann, and R. J. Hinkle, J. Opt. A 4, S202 (2002).
  29. L. Antonov, K. Kamada, and K. Ohta, Appl. Spectrosc. 56, 1508 (2002).
  30. J. R. Nam, C. H. Kim, S. C. Jeoung, K. S. Lim, H. M. Kim, S. J. Jeon, and B. R. Cho, Chem. Phys. Lett. 427, 210 (2006).
  31. W. Ma, Y. Wu, D. Gu, and F. Gan, Chin. Opt. Lett. 3, 351 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited