OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 12 — Dec. 1, 2012
  • pp: 121404–121404

Self-mixing interferometry based on nanometer fringes and polarization flipping

Zhaoli Zeng, Shulian Zhang, Shoushen Zhu, Wenxue Chen, and Yan Li  »View Author Affiliations

Chinese Optics Letters, Vol. 10, Issue 12, pp. 121404-121404 (2012)

View Full Text Article

Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Self-mixing interferometry (SMI) based on nanometer fringes and polarization flipping is realized. The interferometer comprises a single-mode He-Ne laser and a high-amplitude reflectivity feedback mirror. The nanometer fringes are obtained by tilting the external feedback mirror. The fringe density is 35 times higher than that derived with conventional two-beam interference, and each fringe corresponds to a λ/70 displacement in external cavity length. Moreover, polarization flipping occurs when the external feedback mirror moves in the opposite direction. Such movement can be used to easily distinguish displacement direction. Experimental results show an optical resolution of displacement measurement of 9.04 nm with a range of 100 µm. The proposed SMI presents promising application prospects in precisely measuring displacement and calibrating other micro-displacement sensors because of its optical wavelength traceability.

© 2012 Chinese Optics Letters

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference

ToC Category:
Lasers and Laser Optics

Zhaoli Zeng, Shulian Zhang, Shoushen Zhu, Wenxue Chen, and Yan Li, "Self-mixing interferometry based on nanometer fringes and polarization flipping," Chin. Opt. Lett. 10, 121404-121404 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. E. T. F. Ashby and D. F. Jephcott, Appl. Phys. Lett. 3, 13 (1963).
  2. R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2676 (1996).
  3. Y. D. Tan and S. L. Zhang, Appl. Opt. 46, 6064 (2007).
  4. Z. Zhao and S. Zhang, Chin. Opt. Lett. 10, 032801 (2012).
  5. G. Liu, S. L. Zhang, and J. Zhu, Appl. Opt. 42, 6636 (2003).
  6. Z. Cheng, H. Gao, Z. Zhang, H. Huang, and J. Zhu, Appl. Opt. 45, 2246 (2006).
  7. W. Mao, S. Zhang, and L. Fei, Appl. Opt. 45, 8500 (2006).
  8. X. Cheng, S. Zhang, L. Zhang, and Y. Tan, Chin. Phys. Lett. 23, 3275 (2006).
  9. B. Ovryn and J. H. Andrews, Opt. Lett. 23, 1078 (1998).
  10. J. Kato, N. Kikuchi, I. Yamaguchi, and S. Ozono, Meas. Sci. Technol. 6, 45 (1995).
  11. T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, Opt. Eng. 38, 543 (1999).
  12. M.Wang and G. Lai, Rev. Sci. Instrum. 72, 3440 (2001).
  13. L. Fei and S. Zhang, Opt. Commun. 273, 226 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited