OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 4 — Apr. 1, 2012
  • pp: 043001–

Study of broadband THz time-domain spectroscopy at different relative humidity levels

Chiajen Lin, Ichen Ho, and X. C. Zhang  »View Author Affiliations


Chinese Optics Letters, Vol. 10, Issue 4, pp. 043001- (2012)


View Full Text Article

Acrobat PDF (545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Two detection techniques of broadband terahertz (THz) time-domain spectroscopy-THz air-biased coherent detection (THz-ABCD; from 0.3 to 14 THz) and electro-optical (EO) detection (from 0.3 to 7 THz) - are both performed at several different relative humidity levels. The THz power exponentially decays with the increase in relative humidity. The dynamic range of the main pulse in the time domain linearly decreases as the relative humidity increases from 0% to 40%, and linear fittings show that the slopes are -0.017 and -0.019 for THz-ABCD and EO detection, respectively. Because of the multiple reflections caused by the crystal in the common EO detection, THz-ABCD has better spectral resolution (17 GHz) than that of EO detection (170 GHz). The spectrum of water vapor absorption measured by THz-ABCD is also compared with that measured by the Fourier transform infrared spectroscopy (FTIR).

© 2012 Chinese Optics Letters

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

Citation
Chiajen Lin, Ichen Ho, and X. C. Zhang, "Study of broadband THz time-domain spectroscopy at different relative humidity levels," Chin. Opt. Lett. 10, 043001- (2012)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-10-4-043001


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Ferguson and X. Zhang, Nature Mater. 1, 26 (2002).
  2. P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
  3. M. Tonouchi, Nature Photon. 1, 97 (2007).
  4. M. van Exter, Ch. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
  5. Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011).
  6. W. S. Holland, J. S. Greaves, B. Zuckerman, R. A. Webb, C. McCarthy, I. M. Coulson, D. M. Walther, W. R. F. Dent, W. K. Gear, and I. Robson, Nature 392, 788 (1998).
  7. H. Yang, C. A. Kulesa, C. K. Walker, N. F. H. Tothill, J. Yang, M. C. B. Ashley, X. Cui, L. Feng, J. S. Lawrence, D. M. Luong-Van, M. J. McCaughrean, J. W. V. Storey, L. Wang, X. Zhou, and Z. Zhu, Antarctica Publ. Astron. Soc. Pac. 122, 190 (2010).
  8. I-Chen Ho, X. Guo, and X.-C. Zhang, Opt. Express 18, 2872 (2010).
  9. I-Chen Ho and X.-C. Zhang, Appl. Phys. Lett: 98, 241908 (2011).
  10. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, Nat. Photonics 4, 627 (2010).
  11. B. Clough, J. Liu, and X.-C Zhang, Opt. Lett. 35, 3544 (2010).
  12. X. Lu, N. Karpowicz, and X.-C. Zhang, J. Opt. Soc. Am. B 26, A66 (2009).
  13. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).
  14. M. Naftaly and R. Dudley, Opt. Lett. 34, 1213 (2009).
  15. H. Mitschele, Chem. Educ. Today 73, A211 (1996).
  16. G. Klatt, R. Gebs, H. Schafer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, IEEE J. Sel. Top. Quant. 17, 159 (2011).
  17. L. S. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J.-P. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J.-M. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckov'a, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. V. Auwera, J. Quant. Spectrosc. Radiat. Transfer 110, 533 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited