OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 5 — May. 1, 2012
  • pp: 052801–

Improvement of signal-to-noise ratio in chaotic laser radar based on algorithm implementation

Bingjie Wang, Tong Zhao, and Huakui Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 10, Issue 5, pp. 052801- (2012)

View Full Text Article

Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Chaotic laser radar based on correlation detection is a high-resolution measurement tool for remotely monitoring targets or objects. However, its effective range is often limited by the side-lobe noise of correlation trace, which is always increased by the randomness of the chaotic signal itself and other transmission channel noises or interferences. The experimental result indicates that the wavelet denoising method can recover the real chaotic lidar signal in strong period noise disturbance, and a signal-to-noise ratio of about 8 dB is increased. Moreover, the correlation average discrete-component elimination algorithm significantly suppresses the side-lobe noise of the correlation trace when 20 dB of chaotic noise is embedded into the chaotic probe signal. Both methods have advantages and disadvantages.

© 2012 Chinese Optics Letters

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Bingjie Wang, Tong Zhao, and Huakui Wang, "Improvement of signal-to-noise ratio in chaotic laser radar based on algorithm implementation," Chin. Opt. Lett. 10, 052801- (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 438, 343 (2005).
  2. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, Nat. Photon. 2, 728 (2008).
  3. Y. Zhang, J. Zhang, M. Zhang, and Y. Wang, Chin. Opt. Lett. 9, 031404 (2011)
  4. Y. Wang, B. Wang, and A. Wang, IEEE Photon. Technol. Lett. 20, 1636 (2008).
  5. A. Wang, M. Zhang, H. Xu, and Y. Wang, IEEE Electron Dev. Lett. 32, 372 (2011).
  6. K. Myneni, T. A. Barr, B. R. Reed, and S. D. Pethel, Appl. Phys. Lett. 78, 1496 (2001).
  7. F. Y. Lin and J. M. Liu, IEEE J. Sel. Topics Quantum Electron. 10, 991 (2004).
  8. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, Appl. Opt. 25, 63 (1986).
  9. R. Matthey and V. Mitev, Opt. Laser. Eng. 43, 557 (2005).
  10. A. Wang, Y. Wang, and H. He, IEEE Photon. Technol. Lett. 20, 1633 (2008).
  11. S. A. Billings and K. L. Lee, J. Bifurc. Chaos 14, 1037 (2003).
  12. K. Urbanowicz, J. A. Holyst, T. Stemler, and H. Benner, Acta Phys. Pol. B 35, 2175 (2004).
  13. M. Han, Y. H. Liu, H. Xi, and W. Guo, IEEE Signal Proc. Lett. 14, 62 (2007).
  14. D. L. Donoho and I. M. Johnstone, Biomefrika 81, 425(1994).
  15. I. Daubechies, Ten Lectures on Wavelets (in Chinese) J. Li and W. Yang, (trans.) (National Defence Industrial Press, Beijing, 2005).
  16. Y. Takushima and Y. C. Chung, Opt. Express 15, 5318 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited