OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 10, Iss. 8 — Aug. 1, 2012
  • pp: 081101–

Quality assessment for visible and infrared color fusion images of typical scenes

Shaoshu Gao, Weiqi Jin, and Lingxue Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 10, Issue 8, pp. 081101- (2012)

View Full Text Article

Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Two comprehensive evaluation metrics, image perceptual quality based on target detectability (PQTD) and perceptual quality based on scene understanding (PQSU), are proposed to measure image quality for visible and infrared color fusion images of typical scenes. A psychophysical experiment is performed to explore the relationship between conventional quality attributes and the proposed evaluation metrics. The prediction models for PQTD and PQSU are derived by multiple linear regression statistical analyses. Results show that the variation of PQTD can be predicted by sharpness and perceptual contrast between the target and background, and that color harmony and sharpness can predict PQSU. The proposed evaluation metrics and their prediction models provide a foundation for further developing objective quality evaluation of color fusion images.

© 2012 Chinese Optics Letters

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(350.2660) Other areas of optics : Fusion

ToC Category:
Imaging Systems

Shaoshu Gao, Weiqi Jin, and Lingxue Wang, "Quality assessment for visible and infrared color fusion images of typical scenes," Chin. Opt. Lett. 10, 081101- (2012)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Z. Wang and A. C. Bovik, Modern Image Quality Assessment (Morgan &; Claypool Publishers, USA, 2006).
  2. S. Y. Choi, M. R. Luo, M. R. Pointer, and P. A. Rhodes, J. Imaging Sci. Technol. 25, 040904 (2008).
  3. M. Pedersen, N. Bonnier, J. Y. Hardeberg, and F. Albregtsen, J. Electron. Imaging 19, 011016 (2010).
  4. X. Gu, S. Sun, and J. Fang, Chin. Opt. Lett. 5, 274 (2007).
  5. E. A. Essock, M. J. Sinai, J. S. McCarley, W. K. Krebs and J. K. DeFord, Human Factors 41, 438 (1999).
  6. A. Toet, N. Schoumans, and J. K. Ijspeert, in Proceedings of Fusion 2000, TUD3-17-TUD3-23 (2000).
  7. A. Toet and E. M. Franken, Displays 24, 25 (2003).
  8. J. Shi, W. Jin, and L. Wang, J. Infrared and Millimeter Waves 24, 236 (2005).
  9. W. K. Krebs and M. J. Sinai, Human Factors 44, 257 (2002).
  10. P. G. Engeldrum, J. Imaging Sci. Technol. 48, 446 (2004).
  11. S. Yin, L. Cao, Y. Ling, and G. Jin, Infrared Physics &; Technology 53, 146 (2010).
  12. Y. Yuan, J. Zhang, B. Chang, H. Xu, and Y. Han, Chin. Opt. Lett. 9, 011101 (2011).
  13. J. Shi, W. Jin, L. Wang, and H. Chen, in Proceedings of Infrared Components and Their Applications (ed.) 594 (2005).
  14. J. Caviedes and F. Oberti, Signal Process: Image Communication 19, 147 (2004).
  15. B. W. Keelana and E. W. Jin, in Proceedings of Image Quality and System Performance VI 72420Z-1 (2009).
  16. A. J. Calabria and M. D. Fairchild, J. Imaging Sci. Technol. 47, 479 (2003).
  17. S. Guan and P. Hung, Color Res. Appl. 35, 213 (2010).
  18. K. E. Burchett, Color Res. Appl. 27, 28 (2002).
  19. L. C. Ou, P. Chong, M. R. Luo, and C. Minchew, Color Res. Appl. 36, 355 (2011).
  20. S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, Color Res. Appl. 24, 52 (1999).
  21. H. de Ridder, F. J. J. Blommaert, and E. A. Fedorovskaya, in Proceedings of Human Vision, Visual Processing, and Digital Display VI 51 (1995).
  22. P. Bodrogi and T. Tarczali, Color Res. Appl. 26, 278 (2001).
  23. A. Toet and J. Walraven, Opt. Eng. 35, 650 (1996).
  24. A. M. Waxman, A. N. Gove, D. A. Fay, J. P. Racamato, J. E. Carrick, M. C. Seibert, and E. D. Savoye, Neural Networks 10, 1 (1997).
  25. L. Wang, S. Shi, W. Jin, S. Zhang, Y. Zhao, and J. Huang, Trans. Beijing Institute of Technol. 28, 1 (2008).
  26. L. Wang, Y. Zhao, W. Jin, S. Shi, and S. Wang, in Proceedings of Signal Processing, Sensor Fusion, and Target Recognition 65671G1 (2007).
  27. S. Shi, L. Wang, W. Jin, and Y. Zhao, J. Optoelectron. Laser 20, 1552 (2009).
  28. S. Shi, L. Wang, W. Jin, and Y. Zhao, in Proceedings of International Symposium on Photoelectronic Detection and Imaging 66230B (2008).
  29. S. Shi, L. Wang, W. Jin, and Y. Zhao, Acta Photonica Sinica 39, 553 (2010).
  30. Nigel J. W. Morris and S. Avidan, "Database of IR and visible image pairs", http://www.dgp.toronto.edu/nmorris/data/IRData/ (June 24, 2007).
  31. R. S. Berns, Displays 16, 173 (1996).
  32. ITU-R Recommendation BT.500-12, "Methodology for the subjective assessment of the quality of the television pictures," http://www.itu.int/rec/R-REC-BT.500-12-200909-I/en (September, 2006).
  33. J. L. Rodgers and W. A. Nicewander, The American Statistician 42, 59 (1988). 7
  34. N. R. Draper and H. Smith, Applied Regression Analysis (John Wiley &; Sons, Inc, New York, 1998).
  35. H. Arnkil, in Proceedings of Interim Meeting of the International Colour Association 15 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited