Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 11,
  • Issue 11,
  • pp. 110701-
  • (2013)

Self-accelerating and self-breathing Bessel-like beams along arbitrary trajectories

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically and experimentally study self-accelerating and self-breathing Bessel-like beams that follow arbitrary trajectories, including hyperbolic, hyperbolic secant, and three-dimensional (3D) spiraling trajectories. The beams have an overall Bessel-like profile in transverse dimensions; however, the intensity of their central main lobe breathes while traveling along a curved trajectory. Such beams can be readily generated experimentally through appropriate phase modulation of the optical wavefront. The beams contribute to the design of new families of self-accelerating beams.

© 2013 Chinese Optics Letters

PDF Article
More Like This
Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories

Juanying Zhao, Peng Zhang, Dongmei Deng, Jingjiao Liu, Yuanmei Gao, Ioannis D. Chremmos, Nikolaos K. Efremidis, Demetrios N. Christodoulides, and Zhigang Chen
Opt. Lett. 38(4) 498-500 (2013)

Bessel-like optical beams with arbitrary trajectories

Ioannis D. Chremmos, Zhigang Chen, Demetrios N. Christodoulides, and Nikolaos K. Efremidis
Opt. Lett. 37(23) 5003-5005 (2012)

Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories

Wenxiang Yan, Yuan Gao, Zheng Yuan, Zhuang Wang, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang
Opt. Lett. 46(7) 1494-1497 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.