OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 11 — Nov. 1, 2013
  • pp: 112501–

Quadratic nonlinear response to 1.56-\mu m continuous wave laser in semi-insulating GaAs

Xiuhuan Liu, Yi Li, Zhanguo Chen, Mingli Li, Gang Jia, Yanjun Gao, Lixin Hou, Shuang Feng, Xinlu Li, and Qi Wang  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 11, pp. 112501- (2013)


View Full Text Article

Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The nonlinear photoresponse to a 1.56-\mu m infrared continuous wave laser in semi-insulating (SI) galliumarsenide (GaAs) is examined. The double-frequency absorption (DFA) is responsible for the nonlinear photoresponse based on the quadratic dependence of the photocurrent separately on the coupled optical power and bias voltage. The electric field-induced DFA remarkably affects the native DFA in SI GaAs. The surface electric field or the surface band-bending of SI GaAs significantly affects the magnitude variation of the photocurrent and dark current.

© 2013 Chinese Optics Letters

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4400) Nonlinear optics : Nonlinear optics, materials
(250.0040) Optoelectronics : Detectors
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Optoelectronics

Citation
Xiuhuan Liu, Yi Li, Zhanguo Chen, Mingli Li, Gang Jia, Yanjun Gao, Lixin Hou, Shuang Feng, Xinlu Li, and Qi Wang, "Quadratic nonlinear response to 1.56-\mu m continuous wave laser in semi-insulating GaAs," Chin. Opt. Lett. 11, 112501- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-11-112501


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Fujita, H. Ohnishi, P. O. Vaccaro, and T. Watanabe, Microelectronics J. 28, 1019 (1997).
  2. H. K. Choi, G. W. Turner, T. H. Windhorn, and B. Y. Tsaur, IEEE Electron. Device Lett. EDL-7, 500 (1986).
  3. H. K. Choi, J. P. Mattia, G. W. Turner, and B. Y. Tsaur, IEEE Electron. Device Lett. 9, 512 (1988).
  4. H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, Electron. Lett. 35, 173 (1999).
  5. Q. Han, Z. Niu, L. Peng, H. Ni, X. Yang, Y. Du, H. Zhao, R. Wu, and Q. Wang, Appl. Phys. Lett. 89, 131104 (2006).
  6. S. Zhang, L. Chen, and S. Zhuang, Chin. Opt. Lett. 10, 110401 (2012).
  7. J. Wang, S. Niu, T. Lan, C. Zhou, and Q. Sun, Science and Technology Innovation Herald 32, 75 (2010) .
  8. I. Vurgaftman, J. R. Meyer, N. Tansu, and L. J. Mawst, Appl. Phys. Lett. 83, 2742 (2003).
  9. N. Tansu, J. Yeh, and L. J. Mawst, IEEE J. Select. Topic. Quantum Electron. 9, 1220 (2003).
  10. N. Tansu, A. Quandt, M. Kanskar, W. Mulhearn, and L. J. Mawst, Appl. Phys. Lett. 83, 18 (2003).
  11. N. Tansu and L. J. Mawst, J. Appl. Phys. 97, 054502 (2005).
  12. J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, IEEE J. Quantum Electron. 47, 870 (2011).
  13. L. Xu, D. Patel, C. S. Menoni, J. Y. Yeh, L. J. Mawst, and N. Tansu, IEEE Photon. J. 4, 2262 (2012).
  14. J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, Phys. Rev. Lett. 71, 633 (1993).
  15. T. A. Germer, K. W. Kolasi'nski, J. C. Stephenson, and L. J. Richer, Phys. Rev. B 55, 10694 (1997).
  16. K. A. Peterson and D. J. Kane, Opt. Lett. 26, 438 (2001).
  17. D. J. Kane and W. Wood, IEEE Photon. Technol. Lett. 18, 1669 (2006).
  18. X. Liu, Z. Chen, G. Jia, H. Wang, Y. Gao, and Y. Li, Chin. Phys. Lett. 28, 114202 (2011).
  19. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, and K. E. Goodson, Appl. Phys. Lett. 77, 2109 (2000).
  20. A. L. Lin and R. H. Bube, J. Appl. Phys. 47, 1859 (1976).
  21. R. Zucca, J. Appl. Phys. 48, 1987 (1977).
  22. P. F. Lindquist, J. Appl. Phys. 48, 1262 (1977).
  23. K. Kitahara, N. Nakai, A. Shibatomi, and S. Ohkawa, Appl. Phys. Lett. 32, 259 (1978).
  24. E. Liu, B. Zhu, and J. Luo, Semiconductor Physics (Beijing Publishing House of Electronics Industry, Beijing, 2003).
  25. A. Behnam, J. Johnson, Y. Choi, L. Noriega, M. G. Ertosun, Z. Wu, A. G. Rinzler, P. Kapur, K. C. Saraswat,
  26. and A. Ural, J. Appl. Phys. 103, 114315 (2008).
  27. J. H. Park and H. Yu, Opt. Lett. 36, 1182 (2011).
  28. M. Hamada, T. Teraji, and T. Ito, J. Appl. Phys. 107, 063708 (2010).
  29. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, Appl. Phys. Lett. 81, 1323 (2002).
  30. B. Shi, X. Liu, Z. Chen, G. Jia, K. Cao, Y. Zhang, S. Wang, C. Ren, and J. Zhao, Appl. Phys. B 93, 873 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited