OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 11 — Nov. 1, 2013
  • pp: 112503–

Nanospheroidal particles as convenient nanoantenna elements

M. Khosravi, R. A. Sadeghzadeh, and M. S. Abrishamian  »View Author Affiliations

Chinese Optics Letters, Vol. 11, Issue 11, pp. 112503- (2013)

View Full Text Article

Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A highly tunable optical nanoantenna element is proposed through gradual transformation from a sphere to a prolate spheroid. This new element induces field enhancement and an increase in resonance frequency. Rather than a purely metallic material, we propose the use of a metal-coated dielectric spheroid as a nanoelement because of its flexibility. We show that a spheroidal element enhances the near-field better than its rod and sphere counterparts. As such, spheroidal elements are good candidates for improving solar-cell performance.

© 2013 Chinese Optics Letters

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.2200) Scattering : Extinction
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

M. Khosravi, R. A. Sadeghzadeh, and M. S. Abrishamian, "Nanospheroidal particles as convenient nanoantenna elements," Chin. Opt. Lett. 11, 112503- (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Novotny, Optical Antennas for Enhanced Light-Matter Interactions (Report, The Institute of Optics, University of Rochester, 2010).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
  3. P. M¨uhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
  4. M. L. Brongersma, Nature Photonics 2, 270 (2008).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  6. D. Guzatov and V. Klimov, New J. Phys. 13, 053034 (2011).
  7. L. Novotny, Phys. Today 64, 47 (2011).
  8. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).
  9. J. Li and N. Engheta, IEEE Ant. Prop. Society Int. Symposium 3388 (2007).
  10. J. Xue, Q. Zhu, J. Liu, Y. Li, Z. Zhou, Z. Lin, J. Yan, J. Li, and X.Wang, Nanoscale Research Lett. 8, 295 (2013).
  11. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).
  12. J. Zhao, G. Zheng, S. Li, H. Zhou, Y. Ma, R. Zhang, Y. Shi, and P. He, Chin. Opt. Lett. 10, 042302 (2012).
  13. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
  14. H. Gai, J. Wang, and Q. Tian, Appl. Opt. 46, 2229 (2007).
  15. R. Thomas, J. Kumar, R. S. Swathi, and K. G. Thomas, Curr. Sci. 102, 85 (2012).
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited