OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 3 — Mar. 1, 2013
  • pp: 030603–

Phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses

Shiwei Wang, Jun Zheng, and Jianqiu Xu  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 3, pp. 030603- (2013)


View Full Text Article

Acrobat PDF (416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a new phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses. In this system, the pulses from two electro-optic switches are modulated and interferentially combined, thereby improving the shaping resolution and narrowing the pulse width. This method allows the arbitrary tuning of pulse width, repetition rate, and temporal profile in an all-fiber configuration. The system is compatible with and can be easily embedded in other systems to achieve higher pulse energy and higher pulse repetition rate.

© 2013 Chinese Optics Letters

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5060) Fiber optics and optical communications : Phase modulation
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Fiber Optics and Optical Communications

Citation
Shiwei Wang, Jun Zheng, and Jianqiu Xu, "Phase-modulation-combination system for the generation of arbitrarily shaped repetition rate pulses," Chin. Opt. Lett. 11, 030603- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-3-030603


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 351071(2007).
  2. S. T. Cundiff, Nature 450, 1175 (2007).
  3. W. H. Knox, IEEE J. Sel. Top. Quantum Electron. 6,1273 (2000).
  4. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, Opt. Lett. 25, 1418 (2000).
  5. T. M. Fortier, A. Bartels, and S. A. Diddams, Opt. Lett. 31, 1011 (2006).
  6. D. Kim, J. N. Kutz, and D. J. Muraki, IEEE J. Sel. Top. Quantum Electron. 36, 465 (2000).
  7. U. Keller, Nature 424, 831 (2003).
  8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010).
  9. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater. 19, 3077 (2009).
  10. Y. Dai and C. Xu, Opt. Express 17, 6584 (2009).
  11. J. van Home, J. H. LEE, and C. Xu, Opt. Lett. 32, 1408 (1999).
  12. T. Khayim and M. Yamauchi, Quantum Electron. 35, 1412 (1999).
  13. Y. Wang, J. Wang, Y. Jiang, Y. Bao, X. Li, and Z. Lin, Chin. Opt. Lett. 6, 841 (2008).
  14. R. Xin and J. D. Zuegel, Opt. Lett. 36, 2605 (2011).
  15. R. Xin and J. D. Zuegel, in Proceedings of ASSP 2010 AMD3 (2010).
  16. H. N. Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, J. Lighwave Technol. 30, 853 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited