OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 4 — Apr. 1, 2013
  • pp: 040501–

Effective medium parameters for 1D photonic crystal containing single-negative material layers using the envelope function approach

Munazza Zulfiqar Ali  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 4, pp. 040501- (2013)


View Full Text Article

Acrobat PDF (96 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Nonlinear wave propagation in a 1D photonic crystal containing single-negative layers is investigated using the multiple-scale method. In this approach, the electric field is decomposed into a slowly varying envelope function and a fast Bloch-like function to obtain the analytic expressions of the effective parameters of an equivalent medium. The periodic structure has an equivalent left-handed medium for the envelope function. Gap soliton formation is discussed and compared with that associated with the Bragg gap.

© 2013 Chinese Optics Letters

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(050.5298) Diffraction and gratings : Photonic crystals
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Diffraction and Gratings

Citation
Munazza Zulfiqar Ali, "Effective medium parameters for 1D photonic crystal containing single-negative material layers using the envelope function approach," Chin. Opt. Lett. 11, 040501- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-4-040501


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  3. C. M. Soukoulis, Photonic Band Gap Materials (Springer, Berlin, 1996).
  4. J. D. Joannopoulos, Nature 386, 143 (1997).
  5. S. F. Mingaleev and Y. S. Kivshar, Phys. Rev. Lett. 86, 5474 (2001).
  6. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
  7. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
  8. A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003).
  9. T. Pan, C. Tang, L. Gao, and Z. Li, Phys. Lett. A 337, 473 (2005).
  10. J. B. Pendry and S. A. Ramakrishna, J. Phys. Condens. Matter 15, 6345 (2003).
  11. M. Z. Ali and T. Abdullah, Phys. Lett. A 351, 184 (2006).
  12. A. Alu and N. Engheta, IEEE Trans. Microw. Theory Technol. 52, 199 (2004).
  13. L. Wang, H. Chen, and S. Zhu, Phys. Lett. A 350, 410 (2006).
  14. K. Y. Kim, Opt. Lett. 30, 430 (2005).
  15. M. Hotta, M. Hano, and I. Aawi, IEICE. Trans. Electron. E88-C, 275 (2005).
  16. L. G. Wang, H. Chen, and S. Y. Zhu, Phys. Rev. B 70, 245102 (2004).
  17. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, Phys. Rev. E 69, 066607 (2004).
  18. H. Jaing, H. Chen, H. Li, and Y. Zhang, Chin. Phys. Lett. 22, 884 (2005).
  19. H. Jiang, H. Chen, H. Li, and Y. Zhang, J. Appl. Phys. 98, 013101 (2005).
  20. G. Guan, H. Jiang, and H. Li, Appl. Phys. Lett. 88, 211112 (2006).
  21. D. R. Fredkin and A. Ron, Appl. Phys. Lett. 81, 1753 (2002).
  22. S. M. Wang, C. J. Tang, T. Pan, and L. Gao, Phys. Lett. A 348, 424 (2006).
  23. J. E. Sipe and H. G. Winful, Opt. Lett. 13, 132 (1988).
  24. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 38, 5149 (1988).
  25. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 39, 5163 (1989).
  26. W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited