OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 4 — Apr. 1, 2013
  • pp: 040601–

Temperature-compensated f iber optic Fabry-Perot accelerometer based on the feedback control of the Fabry-Perot cavity length

Pinggang Jia and Daihua Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 11, Issue 4, pp. 040601- (2013)

View Full Text Article

Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A temperature-compensated fiber optic Fabry-Perot accelerometer (FOFPA) formed by symmetrically bonding an all-silica in-line fiber Fabry-Perot etalon (ILFFPE) and a piezoelectric ceramic unimorph actuator (PCUA) to two surfaces of a silica cantilever is reported. The all-silica ILFFPE with feedback-controlled cavity length by the PCUA simultaneously senses acceleration and temperature. The results indicate that the fabricated FOFPA system simultaneously senses acceleration and temperature with active temperature compensation. The nonlinearity of the output voltage to acceleration is less than 0.65%. The nonlinearity of the control voltage to temperature is 1.75%. Furthermore, the maximum deviation of the sensitivity with temperature compensation at a temperature range from 25 to 50 oC is 0.025 V/g.

© 2013 Chinese Optics Letters

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5060) Fiber optics and optical communications : Phase modulation
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Fiber Optics and Optical Communications

Pinggang Jia and Daihua Wang, "Temperature-compensated f iber optic Fabry-Perot accelerometer based on the feedback control of the Fabry-Perot cavity length," Chin. Opt. Lett. 11, 040601- (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. Conforti, M. Brenci, A. Mencaglia, and A. G. Mignani, Appl. Opt. 28, 5158 (1989).
  2. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
  3. N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, and S. Bandyopadhyay, Sensors Actuators A Phys. 173, 108 (2012).
  4. J. Zhang, X. Qiao, M. Hu, Z. Feng, H. Gao, Y. Yang, and R. Zhou, Chin. Opt. Lett. 9, 090606 (2011).
  5. J. Zhang, X. Qiao, M. Hu, Z. Feng, H. Gao, Y. Yang, and R. Zhou, Chin. Opt. Lett. 9, 090607 (2011).
  6. Y. Weng, X. Qiao, Z. Feng, M. Hu, J. Zhang, and Y. Yang, Chin. Opt. Lett. 9, 100604 (2011).
  7. Y. Weng, X. Qiao, T. Guo, M. Hu, Z. Feng, R. Wang, and J. Zhang, IEEE Sens. J. 12, 800 (2012).
  8. N. Zeng, C. Shi, M. Zhang, L. Wang, Y. Liao, and S. Lai, Opt. Commun. 234, 153 (2004).
  9. R. D. Pechstedt and D. A. Jackson, Appl. Opt. 34, 3009 (1995).
  10. G. A. Cranch and P. J. Nash, J. Lightwave Technol. 18, 1233 (2000).
  11. C. Chen, D. Zhang, G. Ding, and Y. Cui, Appl. Opt. 38, 628 (1999).
  12. Y. Wang, H. Xiao, S. Zhang, F. Li, and Y. Liu, Meas. Sci. Technol. 18, 1763 (2007).
  13. G. Chen, X. Zhang, G. Brambilla, and T. P. Newson, Opt. Lett. 36, 3669 (2011).
  14. F. Peng, J. Yang , X. Li, Y. Yuan, B. Wu, A. Zhou, and L. Yuan, Opt. Lett. 36, 2056 (2011).
  15. F. Peng, J. Yang, B. Wu, Y. Yuan, X. Li, A. Zhou, and L. Yuan, Chin. Opt. Lett. 10, 011201 (2012).
  16. A. S. Gerges, T. P. Newson, J. D. C. Jones, and D. A. Jackson, Opt. Lett. 14, 251 (1989).
  17. Q. Lin, L. Chen, S. Li, and X. Wu, Meas. Sci. Technol. 22, 015303 (2011).
  18. J. M. Corres, J. Bravo, F. J. Arregui, and I. R. Matias, Sensors Actuators A Phys. 132, 506 (2006).
  19. T. Ke, T. Zhu, Y. Rao, and M. Deng, Microw. Opt. Technol. Lett. 52, 2531 (2010).
  20. Z. Zang and W. Yang, J. Appl. Phys. 109, 103106 (2011).
  21. Z. Zang, Opt. Commun. 285, 521 (2012).
  22. Z. Zang and Y. Zhang, J. Mod. Opt. 59, 161(2012).
  23. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, Opt. Lett. 18, 1973 (1993).
  24. J. Xu, X. Wang, K. L. Cooper, and A. Wang, Opt. Lett. 30, 3269 (2005).
  25. D. Wang, S. Wang, and P. Jia, Opt. Lett. 37, 2046 (2012).
  26. J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
  27. J. Chen, D. Chen, J. Geng, J. Li, H. Cai, and Z. Fang, Sensors Actuators A Phys. 148, 376 (2008).
  28. J. Chen, W. Li, H. Jiang, and Z. Li, Microw. Opt. Technol. Lett. 54, 1668 (2012).
  29. K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, and I. A. R. Mueller, IEEE Sens. J. 12, 133 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited