OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 4 — Apr. 1, 2013
  • pp: 041403–

Ultrafast laser ablation size and recast adjustment in dielectrics based on electron dynamics control by pulse train shaping

Chuancai Xu, Lan Jiang, Ni Leng, Yanping Yuan, Pengjun Liu, Cong Wang, and Yongfeng Lu  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 4, pp. 041403- (2013)


View Full Text Article

Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The manipulation of the subpulse number, pulse delay, and pulse energy distribution of an ultrafast laser enables electron dynamics control by changing absorptions, excitations, ionizations, and recombinations of electrons, which can result in smaller, cleaner, and more controllable structures. This letter experimentally reveals that ablation sizes and recasts can be controlled by shaping femtosecond pulse trains to adjust transient localized electron dynamics, material properties, and corresponding phase change mechanisms.

© 2013 Chinese Optics Letters

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.5540) Ultrafast optics : Pulse shaping
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Lasers and Laser Optics

Citation
Chuancai Xu, Lan Jiang, Ni Leng, Yanping Yuan, Pengjun Liu, Cong Wang, and Yongfeng Lu, "Ultrafast laser ablation size and recast adjustment in dielectrics based on electron dynamics control by pulse train shaping," Chin. Opt. Lett. 11, 041403- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-4-041403


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
  2. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).
  3. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
  4. Y. Li, X. Gao, M. Jiang, Q. Sun, and J. Tian, Chin. Opt. Lett. 10, 102201 (2012).
  5. Y. Liao, Y. Ju, L. Zhang, F. He, Q. Zhang, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Opt. Lett. 35, 3225 (2010).
  6. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Niso, Science 314, 443 (2006).
  7. A. L. Cavalieri, N. Muller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature 449, 1029 (2007).
  8. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Science 317, 769 (2007).
  9. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science 320, 1614 (2008).
  10. M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. C. Bandulet, H. Pepin, J. C. Kieffer, R. Dorner, D. M. Villeneuve, and P. B. Corkum, Science 320, 1478 (2008).
  11. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).
  12. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
  13. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
  14. S. Weber, M. Barthelemy, and B. Chatel, Appl. Phys. B98, 323 (2010).
  15. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Nature 406, 164 (2000).
  16. A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Woste, Phys. Rev. Lett. 93, 033001 (2004).
  17. M. Renard, E. Hertz, B. Lavorel, and O. Faucher, Phys. Rev. A 69, 043401 (2004).
  18. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
  19. A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, Phys. Rev. E 65, 026403 (2002).
  20. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, Appl. Phys. Lett. 80, 353 (2002).
  21. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, Appl. Phys. A 77, 265 (2003).
  22. Y. P. Deng, X. H. Xie, H. Xiong, Y. X. Leng, C. F. Cheng, H. H. Lu, R. X. Li, and Z. Z. Xu, Opt. Express 13, 3096 (2005).
  23. I. H. Chowdhury, X. F. Xu, and A. M. Weiner, Appl. Phys. Lett. 86, 151110 (2005).
  24. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, Opt. Express 15, 17855 (2007).
  25. C. Wang, L. Jiang, F. Wang, X. Li, Y. Yuan, and H. L. Tsai, Phys. Lett. A 375, 3200 (2011).
  26. C. Wang, L. Jiang, F. Wang, X. Li, Y. Yuan, H. L. Tsai, and Y. Lu, J. Phys. Condens. Matter 24, 275801 (2012).
  27. L. Jiang, P. Liu, X. Yan, N. Leng, C. Xu, H. Xiao, and Y. Lu, Opt. Lett. 37, 2781 (2012).
  28. N. Leng, L. Jiang, X. Li, C. Xu, P. Liu, and Y. Lu, Appl. Phys. A 109, 679 (2012).
  29. L. Jiang and H. L. Tsai, Appl. Phys. Lett. 87, 151104 (2005).
  30. L. Jiang and H. L. Tsai, J. Heat Tran. 128, 926 (2006).
  31. Y. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. Lu, and H. L. Tsai, J. Phys. D 45, 175301 (2012).
  32. L. Jiang, L. Li, S. Wang, and H. L. Tsai, Chinese J. Lasers (in Chinese) 36, 779 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited