OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 4 — Apr. 1, 2013
  • pp: 042401–

Tunable plasmon resonance coupling in coaxial gold nanotube arrays

Haiqing Xu, Hongjian Li, and Gang Xiao  »View Author Affiliations


Chinese Optics Letters, Vol. 11, Issue 4, pp. 042401- (2013)


View Full Text Article

Acrobat PDF (795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The optical properties and plasmon resonance coupling of double coaxial gold nanotube arrays are investigated. The results show that the optical transmission is highly tunable by varying the thicknesses of the inner and outer nanotubes, the separation between the inner and outer nanotubes, and the dielectric parameters inside, between, and outside the two nanotubes. The shorter-wavelength transmission bands are very sensitive to the modification of the wall thickness of the outer nanotube, the separation, and the dielectric parameters between the double nanotubes. The dipole and multipolar plasmon modes are excited in our model. However, for small separation and refractive index, the dipole normal mode has a leading function in the transmission properties. Compared with the dipolar modes, the contribution of higher-order modes becomes larger as the parameters increase.

© 2013 Chinese Optics Letters

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Citation
Haiqing Xu, Hongjian Li, and Gang Xiao, "Tunable plasmon resonance coupling in coaxial gold nanotube arrays," Chin. Opt. Lett. 11, 042401- (2013)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-11-4-042401


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
  2. Q. Wei, K. Su, S. Durant, and X. Zhang, Nano. Lett. 4, 1067 (2004).
  3. D. S. Citrin, Nano. Lett. 4, 1561 (2004).
  4. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, Phys. Rev. B 71, 235408 (2005).
  5. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano. 2, 707 (2008).
  6. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
  7. A. O. Pinchuk and G. C. Schatz, Appl. Phys. B 93, 31 (2008).
  8. B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, Phys. Rev. B 77, 035440 (2008).
  9. X. Cui and D. Erni, J. Opt. Soc. Am. A 25, 1783 (2008).
  10. Y. F. Chau, H. H. Yeh, C. Y. Liu, and D. P. Tsai, Opt. Commun. 283, 3189 (2010).
  11. H. Li, S. Fu, H. Xu, S. Xie, X. Zhou, and J. Wu, Opt. Commun. 283, 3985 (2010).
  12. Z. Liu, H. Li, H. Xu, S. Xie, X. Zhou, and C. Wu, Opt. Commun. 284, 3331 (2011).
  13. E. Prodan, A. Lee, and P. Nordlander, Chem. Phys. Lett. 360, 325 (2002).
  14. C. Radloff and N. J. Halas, Nano. Lett. 4, 1323 (2004).
  15. Y. Hu, R. C. Fleming, and R. A. Drezek, Opt. Express 16, 19579 (2008).
  16. A. K. Kodali, M. V. Schulmerich, R. Palekar, X. Llora, and R. Bhargava, Opt. Express 18, 23302 (2010).
  17. H. Xu, H. Li, Z. Liu, S. Xie, X. Zhou, and J. Wu, Solid State Commun. 151, 759 (2011).
  18. D. Wu and X. Liu, Appl. Phy. Lett. 96, 151912 (2010).
  19. H. Khosravi, N. Daneshfar, and A. Bahari, Phys. Plasmas 17, 053302 (2010).
  20. Y. F. Chau, Y. J. Lin, and D. P. Tsai, Opt. Express 18, 3510 (2010).
  21. Y. F. Chau, Z. H. Jiang, H. Y. Li, G. M. Lin, F. L. Wu, and W. H. Lin, Progress In Electromagnetics Research B 28, 183 (2011).
  22. Y. A. Akimov,W. S. Koh, and K. Ostrikov, Opt. Express 17, 10195 (2009).
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Dif ference Time-Domain Method, 2nd edn. (Artech House, Boston, 2000).
  24. E. D. Palik, Handbook of Optical Constants in Solids (Academic, Boston, 1982).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited