OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 11, Iss. 7 — Jul. 1, 2013
  • pp: 071202–

An alternative phase modulator half-wave voltage measurement based on photonic link

Quanyi Ye, Chun Yang, Yuhua Chong, and Xianghua Li  »View Author Affiliations

Chinese Optics Letters, Vol. 11, Issue 7, pp. 071202- (2013)

View Full Text Article

Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We measure the half-wave voltage of LiNbO3 phase modulators in a 26-GHz wideband frequency range, and then analyze it by the phase modulation photonic peak gain linked to the interferometric demodulation. The optical interferometer is constructed with two 50:50 couplers and two fiber arms with a 1-m difference in fiber length. The photonic link gain peaks are frequency dependent, as indicated by the differential time delay in the interferometer. The procedure described is a new and practical half-wave voltage measurement method that can accurately predict the nonlinear frequency characteristics of the phase modulator. Moreover, the method can be applied to various types of LiNbO3 phase modulators.

© 2013 Chinese Optics Letters

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(230.4110) Optical devices : Modulators

ToC Category:
Instrumentation, Measurement, and Metrology

Quanyi Ye, Chun Yang, Yuhua Chong, and Xianghua Li, "An alternative phase modulator half-wave voltage measurement based on photonic link," Chin. Opt. Lett. 11, 071202- (2013)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Montebugnoli, M. Boschi, F. Perini, P. Faccin, G Brunori, and E Pirazzini, Microw. Opt. Technol. Lett. 46, 48 (2005).
  2. J. F. Diehl, V. J. Urick, C. S. McDermitt, F. Bucholtz, P. S. Devgan, and K. J. Williams, IEEE Trans. Microw. Theory Technol. 60, 195 (2012).
  3. W. M. Dorsey, C. S. McDermitt, F. Bucholtz, and M. G. Parent, IEEE Trans. Antenn. Propag. 58, 5288 (2010).
  4. L. Liu, S. Zheng, X. Zhang, X. Jin, and H. Chi, J. Electromagn. Waves Appl. 24, 123 (2010).
  5. B. Wang, Z. Li, and X. Wang, Chin. Opt. Lett. 10, 071202 (2012).
  6. B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
  7. S. Zou, Y. Wang, Y. Shao, J. Zhang, J. Yu, and N. Chi, Chin. Opt. Lett. 10, 070625 (2012).
  8. Y. Shi, L. Yan, and A. E. Willner, J. Lightwave Technol. 21, 2358 (2003).
  9. L.-S. Yan, A. E. Willner, and Y. Shi, IEEE Photon. Technol. Lett. 17, 1486 (2005).
  10. E. H. W. Chan and R. A. Minasian, J. Lightwave Technol. 26, 2882 (2008).
  11. S. Zhang, X. Zhang, and Y. Liu, Chin. Phys. Lett. 29, 084217 (2012).
  12. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, IEEE Trans. Microw. Theory Technol. 55, 1978 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited