OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Editor: Zhizhan Xu
  • Vol. 12, Iss. 1 — Jan. 1, 2014
  • pp: 012501–

Tunneling in submicron CMOS single-photon avalanche diodes

Mohammad Azim Karami, Armin Amiri-Sani, and Mohammad Hamzeh Ghormishi  »View Author Affiliations

Chinese Optics Letters, Vol. 12, Issue 1, pp. 012501- (2014)

View Full Text Article

Acrobat PDF (358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Tunneling is studied in two main single-photon avalanche diode (SPAD) topologies, which are n-tub guard ring (NTGR) and p-tub guard ring (PTGR). Device simulation, I-V measurements, and dark count calculations and measurements demonstrate that tunneling is the main source of noise in NTGR, but it is less dominant in PTGR SPADs. All structures are characterized with respect to dark noise, photon detection probability, timing jitter, afterpulsing probability, and breakdown voltage. Noise performance is disturbed because of tunneling, whereas jitter performance is disturbed because of the short diffusion time of photo-generated minority carriers in NTGR SPADs. The maximum photon detection probability is enhanced because of an improvement in absorption thickness.

© 2014 Chinese Optics Letters

OCIS Codes
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Mohammad Azim Karami, Armin Amiri-Sani, and Mohammad Hamzeh Ghormishi, "Tunneling in submicron CMOS single-photon avalanche diodes," Chin. Opt. Lett. 12, 012501- (2014)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. A. Karami, L. Carrara, C. Niclass, M. Fishburn, and E.Charbon, IEEE Electron Device Lett. 31, 692 (2010).
  2. M. A. Karami, M. Gersbach, H. J. Yoon, and E. Charbon, Proc. SPIE 7780, 77801F (2010).
  3. A. Rochas, M. Gosch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, IEEE Photon. Technol. Lett. 15, 963 (2003).
  4. C. Niclass, M. Sergio, and E. Charbon, Proc. SPIE 6372, 63720S (2006).
  5. N. Faramarzpour, M. J. Deen, S. Shirani, and Q. Fang, IEEE Trans. Electron Dev. 55, 760 (2008).
  6. M. Gersbach, "Single-Photon Detector Arrays for Time-Resolved Fluorescence Imaging" PhD. Thesis (Ecole Poly-technique Federale De Lausanne, 2009).
  7. R. K. Henderson, J. Richardson, and L. Grant, in Proceedings of International Image Sensor Workshop 26 (2009).
  8. A. Goetzberger, B. Mcdonald, R. H. Haitz, and R. M. Scarlett, J. Appl. Phys. 34, 1591 (1963).
  9. A. Lacatia, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
  10. R. F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley Publication Company, Boston, 1996).
  11. E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).
  12. A. Rochas, "Single Photon Avalanche Diodes in CMOS technology" PhD. Thesis ( Ecole Polytechnique Federale De Lausanne, 2003).
  13. W. G. Oldham, R. S. Samuelson, and P. Antognetti, IEEE Trans. Electron Dev. 19, 1056 (1972).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited