Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 13,
  • Issue 3,
  • pp. 032301-032301
  • (2015)

Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large energy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer.

© 2015 Chinese Laser Press

PDF Article
More Like This
Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer

Qiang Wang, Zhaoqi Deng, and Dongge Ma
Opt. Express 17(20) 17269-17278 (2009)

Improving working lifetime and efficiency of phosphor doped organic light-emitting diodes

Yunfei Li, Yuying Hao, Wenlian Li, Shuqing Yuan, Huihui Liu, Yanxia Cui, Hua Wang, Bingshe Xu, and Wei Huang
Opt. Express 21(14) 17020-17027 (2013)

High efficiency blue phosphorescent organic light-emitting diodes with a multiple quantum well structure for reduced efficiency roll-off

Xiao Yang, Shaoqing Zhuang, Xianfeng Qiao, Guangyuan Mu, Lei Wang, Jiangshan Chen, and Dongge Ma
Opt. Express 20(22) 24411-24417 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.