OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 2, Iss. 10 — Oct. 10, 2004
  • pp: 568–570

Polymeric 32-channel arrayed waveguide grating multiplexer using fluorinated poly (ether ether ketone)

Fei Wang, Wei Sun, Aize Li, Maobin Yi, Zhenhua Jiang, and Daming Zhang  »View Author Affiliations

Chinese Optics Letters, Vol. 2, Issue 10, pp. 568-570 (2004)

View Full Text Article

Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In wavelength division multiplexing (WDM) systems, an arrayed waveguide grating (AWG) multiplexer is a key component. A polymeric AWG multiplexer has recently attracted much attention due to its low cost processing and a potential of integration with other devices. Fluorinated poly (ether ether ketone) (FPEEK) is excellent material for fabrication of optical waveguides due to its low absorption loss at 1.55-?m wavelength and high thermal stability. A 32-channel AWG multiplexer has been designed based on the grating diffraction theory and fabricated using newly synthesized FPEEK. During the fabrication process of the Polymer/Si AWG device, spin coating, vaporizing, photolithographic patterning and reactive ion etching (RIE) are used. The AWG multiplexer measurement system is based on a tunable semiconductor laser, infrared camera and a Peltier-type heater. The device exhibits a wavelength channel spacing of 0.8 nm and a center wavelength of 1548 nm in the room temperature.

© 2005 Chinese Optics Letters

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(160.5470) Materials : Polymers
(230.7370) Optical devices : Waveguides

Fei Wang, Wei Sun, Aize Li, Maobin Yi, Zhenhua Jiang, and Daming Zhang, "Polymeric 32-channel arrayed waveguide grating multiplexer using fluorinated poly (ether ether ketone)," Chin. Opt. Lett. 2, 568-570 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. E. Keiser, Optical Fiber Technol. 5, 3 (1999).
  2. B. Nyman, M. Farries, and C. Si, Optical Fiber Technol. 7, 255 (2001).
  3. Y. L. Chu and H. Y. Zhang, Chin. Opt. Lett. 1, 196 (2003).
  4. B. Y. Li, X. Q. Jiang, Y. Z. Tang, J. Y. Yang, M. H. Wang, T. Li, Y. M. Wu, and Y. L. Wang, Acta Opt. Sin. (in Chinese) 22, 1100 (2002).
  5. M. Zirngibl, C. H. Joyner, L. W. Stulz, Th. Gaiffe, and C. Dragone, Electron. Lett. 29, 201 (1993).
  6. S. Toyoda, N. Ooba, T. Kitoh, T. Kurihara, and T. Maruno, Electron. Lett. 37, 1130 (2001).
  7. Y. Zhao, C. S. Ma, D. M. Zhang, F. Wang, Z. C. Cui, S. Y. Liu, and M. B. Yi, J. Optoelectronics.Laser 13, 1097 (2002).
  8. J. Kobayashi, T. Matsuura, S. Sasaki, and T. Maruno, Appl. Opt. 37, 1032 (1998).
  9. J. W. Kang, J. P. Kim, W. Y. Lee, J. S. Kim, J. S. Lee, and J. J. Kim, J. Lightwave Technol. 19, 872 (2001).
  10. Y. X. Wu, P. Lu, and D. M. Liu, Chin. J. Lasers (in Chinese) 30, 521 (2003).
  11. Y. S. Qiu, X. M. Li, T. S. Lv, and F. Y. Guo, Chin. J. Lasers (in Chinese) 29, 801 (2002).
  12. W. B. Guo, C. S. Ma, D. M. Zhang, K. X. Chen, Y. Zhao, Z. C. Cui, and S. Y. Liu, Opt. Commun. 201, 45 (2002).
  13. B. J. Liu, C. H. Chen, W. Hu, H. Su, S. Zhao, Z. H. Jiang, W. J. Zhang, and Z. W. Wu, Chem. J. Chinese Universities (in Chinese) 23, 321 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited