OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 3, Iss. S1 — Aug. 28, 2005
  • pp: S5–S8

Photonic crystal devices for wavelength division multiplexing and slow photon generation

Wei Jiang, Yongqiang Jiang, Lanlan Gu, Xiaonan Chen, Yihong Chen, Xiaolong Wang, Weiping Bai, and Ray T. Chen  »View Author Affiliations

Chinese Optics Letters, Vol. 3, Issue S1, pp. S5-S8 (2005)

View Full Text Article

Acrobat PDF (393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Photonic crystal based nanophotonic devices have been studied for various applications. One important type of devices are optical add-drop multiplexers (OADMs) that consist of photonic crystal cavities and waveguides. We show some novel device architectures and concepts to achieve better performance for such devices and discuss the non-vanishing backscattering issue. We fabricate high-quality photonic crystal waveguides on silicon-on-insulator substrates toward the ultimate goal of implementing the proposed OADM. Low optical loss, slow group velocity, and high dispersion are demonstrated in the fabricated waveguides, which is of interest to slow photon generation and optical delay line applications as well.

© 2005 Chinese Optics Letters

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(160.3130) Materials : Integrated optics materials
(230.7370) Optical devices : Waveguides
(260.2030) Physical optics : Dispersion

Wei Jiang, Yongqiang Jiang, Lanlan Gu, Xiaonan Chen, Yihong Chen, Xiaolong Wang, Weiping Bai, and Ray T. Chen, "Photonic crystal devices for wavelength division multiplexing and slow photon generation," Chin. Opt. Lett. 3, S5-S8 (2005)

Sort:  Year  |  Journal  |  Reset


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  3. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).
  4. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Phys. Rev. Lett. 80, 960 (1998).
  5. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
  7. Y. Akahane, T. Asano, B. S. Song, Y. Takana, and S. Noda, Opt. Express 13, 2512 (2005).
  8. W. Jiang and R. T. Chen, Phys. Rev. Lett. 91, 213901 (2003).
  9. W. Jiang, J. Zou, L. Wu, Y. Chen, C. Tian, B. Howley, X. Lu, and R. T. Chen, Proc. SPIE 5360, 190 (2004).
  10. S. G. Johnson, S. Fan, P. R. Vileneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
  12. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, J. Lightwave Technol. 22, 514 (2004).
  13. D. Mori and T. Baba, App. Phys. Lett. 85, 1101 (2004).
  14. M. Soljacic and J. D. Joannopoulos, Nature Materials 2, 211 (2004).
  15. J. Q. Chen, Group Representation Theory for Physicists (World Scientific, Singapore, 1989).
  16. A. V. Oppenheim, (ed.) Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1978).
  17. Y. H. Chen, K. Wu, F. Zhao, and R. T. Chen, in Proceedings of the 2004 IEEE Antennas and Propagation Society Symposium 14, 4324 (2004).
  18. K. Hosomi and T. Katsuyama, IEEE J. Quantum Electroni. 38, 825 (2002).
  19. W. Jiang, R. T. Chen, and X. Lu, Phys. Rev. B 71, 245115 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited