OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 3, Iss. 11 — Nov. 10, 2005
  • pp: 621–624

Energy spectrum of fermionized bosonic atoms in optical lattices

Jiurong Han, Haichao Zhang, and Yuzhu Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 3, Issue 11, pp. 621-624 (2005)

View Full Text Article

Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.

© 2005 Chinese Optics Letters

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(270.0270) Quantum optics : Quantum optics
(300.6170) Spectroscopy : Spectra

Jiurong Han, Haichao Zhang, and Yuzhu Wang, "Energy spectrum of fermionized bosonic atoms in optical lattices," Chin. Opt. Lett. 3, 621-624 (2005)

Sort:  Year  |  Journal  |  Reset


  1. A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov, I. I. Lukashevich, and S. Jaakkola, Phys. Rev. Lett. 81, 4545 (1998).
  2. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, Nature 413, 498 (2001).
  3. A. Gorlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Kefferle, Phys. Rev. Lett. 87, 130402 (2001).
  4. F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).
  5. B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).
  6. O. Morsch, J. H. Muller, M. Cristiani, D. Ciampini, and E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001).
  7. W. K. Hensinger, H. Haffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. Mckenzie, G. J. Milburn, W. D. Phillips, S. L. Rolston, H. Rubinsztein-Docnlop, and B. Upcroft, Nature (London) 412, 52 (2001).
  8. F. S. Cataliotti, C. Fort, P. Maddaloni, F. Minardi, A. Trombeffoni, A. Smerzi, and H. Inguscio, Science 293, 843 (2001).
  9. C. Orzel, A. K. Tuchman, M. L. Fenselan, M. Yasuda, and M. A. Kaserich, Science 291, 2386 (2001).
  10. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).
  11. M. Yun and J. Yin, Chin. Opt. Lett. 3, 125 (2005).
  12. J. Stenger, S. Inouye, M. R. Andrews, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett. 82, 2422 (1999).
  13. S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).
  14. M. Girardeau, J. Math. Phys. 1, 516 (1960).
  15. M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033601 (2001).
  16. H. Moritz, T. Stoferle, M. Kohl, and T. Esslinger, Phys. Rev. Lett. 91, 250402 (2003).
  17. T. Stoferle, H. Moritz, C. Schori, M. Kohl, and T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).
  18. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Filling, I. Cirac, G. V. Shlyapnikov, T. W. Honsch, and I. Bloch, Nature (London) 429, 277 (2004).
  19. T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).
  20. E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Y. Qi, Phys. Rev. Lett. 85, 1146 (2000).
  21. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
  22. V. Dunjko, V. Lorent, and M. Olshanii, Phys. Rev. Lett. 86, 5413 (2001).
  23. P. Pedri and L. Santos, Phys. Rev. Lett. 91, 110401 (2003).
  24. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 70, 013606 (2004).
  25. P. Ohberg and L. Santos, Phys. Rev. Lett. 89, 240402 (2002).
  26. L. Pollet, S. M. A. Rombouts, and P. J. H. Denteneer, Phys. Rev. Lett. 93, 210401 (2004).
  27. M. A. Cazalilla, Phys. Rev. A 70, 041604(R) (2004).
  28. M. A. Cazalilla, Phys. Rev. A 67, 053606 (2003).
  29. C. Cohen-Tannoudji, J. Dupont-Roc, and C. Grynberg, Atom-Photon Interactions (Wiley Inter-Science, New York, 1992).
  30. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000).
  31. R. T. Whitlock and P. R. Zilsel, Phys. Rev. 131, 2409 (1963).
  32. J.-J. Liang, J.-Q. Liang, and W.-M. Liu, Phys. Rev. A 68, 043605 (2003).
  33. J.-R. Han, T. Zhang, Y.-Z. Wang, and W.-M. Liu, Phys. Lett. A 332, 131 (2004).
  34. J.-R. Han, J.-M. Liu, H. Jing, and Y.-Z. Wang, Commun. Theor. Phys. 43, 809 (2005).
  35. J.-R. Han, Y.-Z. Wang, and W. M. Liu, J. Phys. B: At. Mol. Opt. Phys. 38, 1411 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited