OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 3, Iss. 12 — Dec. 10, 2005
  • pp: 694–697

Modes competition in a birefringence cavity laser with optical feedback

Gang Liu, Shulian Zhang, Ting Xu, and Xinjun Wan  »View Author Affiliations

Chinese Optics Letters, Vol. 3, Issue 12, pp. 694-697 (2005)

View Full Text Article

Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The modes competition characteristics in birefringence cavity laser are studied in different regions of the gain curve. The mode's intensity modulation depth with modes competition is much deeper than that without modes competition. When the average intensities of the two modes are comparable, the intensity modulation depth of either mode reaches its maximum. Modes competition can do more contribution to the mode's modulation depth than the percentage of light reflected back into the laser cavity does. These characteristics can be used to improve the sensitivity of an optical feedback system. A modes competition factor is introduced to either mode's intensity expression which describes the laser intensity more precisely.

© 2005 Chinese Optics Letters

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.0140) Lasers and laser optics : Lasers and laser optics
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference

Gang Liu, Shulian Zhang, Ting Xu, and Xinjun Wan, "Modes competition in a birefringence cavity laser with optical feedback," Chin. Opt. Lett. 3, 694-697 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. J. Rudd, J. Phys. E 1, 723 (1968).
  2. G. Liu, S. Zhang, J. Zhu, and Y. Li, Opt. Commun. 221, 387 (2003).
  3. G. Liu, S. Zhang, J. Zhu, and Y. Li, Appl. Opt. 42, 6636 (2003).
  4. G. Liu, S. Zhang, Y. Li, and J. Zhu, Chin. Phys. 13, 855 (2003).
  5. K. Otsuka, K. Abe, and J.-Y. Ko, Opt. Lett. 27, 1339 (2002).
  6. G. Giulian, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
  7. X. Li, W. Pan, B. Luo, D. Ma, Z. Zhao, and G. Deng, Chin. Opt. Lett. 2, 278 (2004).
  8. B. Ovryn and J. H. Andrews, Opt. Lett. 23, 1078 (1998).
  9. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
  10. P. J. De Groot, G. M. Gallatin, and S. H. Macomber, Appl. Opt. 27, 4475 (1988).
  11. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, J. Lightwave Technol. 12, 1577 (1994).
  12. K. Petermann, IEEE J. Sel. Top. in Quantum Electron. 1, 480 (1995).
  13. G. Liu, S. Zhang, T. Xu, J. Zhu, and Y. Li, Opt. Commun. 241, 159 (2004).
  14. Y. Li, S. Zhang, Y. Han, J. Fu, H. Guo, and J. Ou, Opt. Eng. 39, 3039 (2000).
  15. S. Yang and S. Zhang, Opt. Commun. 68, 55 (1988).
  16. G. Liu, S. Zhang, L. Li, and J. Zhu, Opt. Commun. 231, 349 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited