Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 3,
  • Issue 2,
  • pp. 63-65
  • (2005)

In-situ end-point detection during ion-beam etching of multilayer dielectric gratings

Not Accessible

Your library or personal account may give you access

Abstract

An in-situ end-point detection technique for ion-beam etching is presented. A laser beam of the same wavelength and polarization as those in the intended application of the grating is fed into the vacuum chamber, and the beam retro-diffracted by the grating under etching is extracted and detected outside the chamber. This arrangement greatly simplifies the end-point detection. Modeling the grating diffraction with a rigorous diffraction grating computer program, we can satisfactorily simulate the evolution of the diffraction intensity during the etching process and consequently, we can accurately predict the end-point. Employing the proposed technique, we have reproducibly fabricated multilayer dielectric gratings with diffraction efficiencies of more than 92%.

© 2005 Chinese Optics Letters

PDF Article
More Like This
High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region

Hui Lin, Lichao Zhang, Lifeng Li, Chunshui Jin, Hongjun Zhou, and Tonglin Huo
Opt. Lett. 33(5) 485-487 (2008)

In situ detection and analysis of laser-induced damage on a 1.5-m multilayer-dielectric grating compressor for high-energy, petawatt-class laser systems

J. Qiao, A. W. Schmid, L. J. Waxer, T. Nguyen, J. Bunkenburg, C. Kingsley, A. Kozlov, and D. Weiner
Opt. Express 18(10) 10423-10431 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.