OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 3, Iss. 8 — Aug. 10, 2005
  • pp: 475–477

Generation of broadband and multiple-peak THz radiation in aperiodically poled lithium niobate

Fucheng Chen, Xianfeng Chen, Yuping Chen, and Yuxing Xia  »View Author Affiliations

Chinese Optics Letters, Vol. 3, Issue 8, pp. 475-477 (2005)

View Full Text Article

Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We theoretically analyze the generation of broadened and multi-peak terahertz (THz) radiation in aperiodically poled lithium niobate (APPLN), whose sequence of opposite domains is optimized by simulated annealing (SA) algorithm. The full-width at half maximum (FWHM) of the broadened THz radiation in our simulation is 0.26 THz. Both of the central wavelength and FWHM can be easily tuned by choosing proper objective functions. THz radiation with wider and flatter FWHM can be achieved by increasing the length of the lithium niobate crystal. The two-peak THz generation is also provided as an example of multi-peak with the central wavelengths at 1.68 and 1.80 THz, respectively.

© 2005 Chinese Optics Letters

OCIS Codes
(130.3060) Integrated optics : Infrared
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

Fucheng Chen, Xianfeng Chen, Yuping Chen, and Yuxing Xia, "Generation of broadband and multiple-peak THz radiation in aperiodically poled lithium niobate," Chin. Opt. Lett. 3, 475-477 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
  2. Y.-S Lee, T. Meade, V. Perlin, H. Winful, and T. B. Norris, Appl. Phys. Lett. 76, 2505 (2000).
  3. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, Opt. Lett. 26, 563 (2001).
  4. Y.-S Lee, T. Meade, M. DeCamp, and T. B. Norris, Appl. Phys. Lett. 77, 1244 (2000).
  5. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1993).
  6. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
  8. Y. Zhou, G. Wu, G. Zen, and F. Yu, Acta Opt. Sin. (in Chinese) 23, 1000 (2003).
  9. B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
  10. X. Zeng, X. Chen, F. Wu, Y. Chen, Y. Xia, and Y. Chen, Opt. Commun. 204, 407 (2002).
  11. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, Opt. Lett. 27, 2191 (2002).
  12. Y.-S. Lee, N. Amer, and W. C. Hurlbut, Appl. Phys. Lett. 82, 170 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited