OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 4, Iss. 4 — Apr. 1, 2006
  • pp: 192–195

Total cross sections for electrons scattering from C2F4 and SO2 at 30-5000 eV: considering the geometric shielding effect

Deheng Shi, Jinfeng Sun, Yufang Liu, Zunlue Zhu, and Xiangdong Yang  »View Author Affiliations

Chinese Optics Letters, Vol. 4, Issue 4, pp. 192-195 (2006)

View Full Text Article

Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Considering the changes of the geometric shielding effect in a molecule as the incident electron energy varing, an empirical fraction, which is dependent on the incident electron energy, is presented. Using this empirical fraction, the total cross sections (TCSs) for electrons scattering from complex polyatomic molecules C2F4 and SO2 are calculated over a wide energy range from 30 to 5000 eV together with the additivity rule model at Hartree-Fock level. In the TCS calculations, the atoms are presented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption contributions. The quantitative TCSs above 100 eV are in good agreement with those obtained by experiments and other theories. It is proved that the empirical fraction, which exhibits the TCS contributions of shielded atoms in a molecule at different energies, is reasonable.

© 2005 Chinese Optics Letters

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.2070) Atomic and molecular physics : Effects of collisions

Deheng Shi, Jinfeng Sun, Yufang Liu, Zunlue Zhu, and Xiangdong Yang, "Total cross sections for electrons scattering from C2F4 and SO2 at 30-5000 eV: considering the geometric shielding effect," Chin. Opt. Lett. 4, 192-195 (2006)

Sort:  Journal  |  Reset


  1. L. E. Machado, M.-T. Lee, L. M. Brescansin, M. A. P. Lima, and V. McKoy, J. Phys. B 28, 467 (1995).
  2. M.-T. Lee, S. E. Michelin, G. D. Meneses, L. M. Brescansin, and L. E. Machado, J. Phys. B 29, 2337 (1996).
  3. M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).
  4. S. D. Parker and C. W. McCurdy, Phys. Rev. A 43, 3514 (1991).
  5. M. T. Lee, S. E. Michelin, T. Kroin, and E. Veitenheimer, J. Phys. B 32, 3043 (1999).
  6. S. E. Michelin, T. Kroin, and M. T. Lee, J. Phys. B 29, 2115 (1996).
  7. K. L. Bell, N. S. Scott, and M. A. Lennon, J. Phys. B 17, 4757 (1984).
  8. A. K. Bhatia, B. I. Schneider, and A. Temkin, Phys. Rev. Lett. 70, 1936 (1993).
  9. A. S. Kadyrov and I. Bray, Phys. Rev. A 66, 012710 (2002).
  10. T. T. Gien, J. Phys. B 22, L463 (1989).
  11. D. Raj, Phys. Lett. A 160, 571 (1991).
  12. J.-F. Sun, B. Xu, Y.-F. Liu, and D.-H. Shi, Chin. Phys. 14, 1125 (2005).
  13. D. Shi, Y. Liu, J. Sun, Z. Zhi, and X. Yang, Chin. Opt. Lett. 4, 125 (2006).
  14. D. Raj and A. Kumar, Phys. Lett. A 282, 284 (2001).
  15. K. L. Baluja and A. Jain, Phys. Rev. A 45, 7838 (1992).
  16. A. Jain, J. Phys. B 21, 905 (1988).
  17. R. Raizada and K. L. Baluja, Phys. Rev. A 55, 1533 (1997).
  18. K. N. Joshipura and M. Vinodkumar, Z. Phys. D 17, 133 (1997).
  19. D.-H. Shi, Z.-L. Zhu, J.-F. Sun, X.-D. Yang, Y.-F. Liu, and Y. Zhao, Chin. Phys. Lett. 21, 474 (2004).
  20. G. Staszewska, D. W. Schwenken, D. Thirumalai, and D. G. Truhlar, Phys. Rev. A 28, 2740 (1983).
  21. D.-H. Shi, Y.-F. Liu, J.-F. Sun, X.-D. Yang, and Z.-L. Zhu, Chin. Phys. 14, 2208 (2005).
  22. Y.-F. Liu, D.-H. Shi, J.-F. Sun, Z.-L. Zhu, and X.-D. Yang, Commun. Theor. Phys. 43, 309 (2005).
  23. D.-H. Shi, J.-F. Sun, X.-D. Yang, Z.-L. Zhu, and Y.-F. Liu, Acta Phys. Sin. (in Chinese) 54, 2019 (2005).
  24. J. Sun, D. Shi, Z. Zhu, and Y. Liu, Chin. Opt. Lett. 1, 624 (2003).
  25. M. Bobeldijk, W. J. van der Zande, and P. G. Kistemaker, Chem. Phys. 179, 125 (1994).
  26. D. R. Lide, CRC Handbook of Chemistry and Physics (81st edn.) (Chemical Rubber Company, Boca Raton, 2001).
  27. E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177 (1974).
  28. M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182 (1975).
  29. X. Zhang, J. Sun, and Y. Liu, J. Phys. B 25, 1893 (1992).
  30. C. Szmytkowski, S. Kwitnewski, and E. P. Denga, Phys. Rev. A 68, 032715 (2003).
  31. A. Zecca, J. C. Nogueira, G. P. Karwasz, and R. S. Brusa, J. Phys. B 28, 477 (1995).
  32. C. Szmytkowski and K. Maciag, Chem. Phys. Lett. 124, 463 (1986).
  33. C. Szmytkowski, P. Mozejko, and A. Krzysztofowicz, Rad. Phys. Chem. 68, 307 (2003).
  34. D. Raj and S. Tomar, J. Phys. B 30, 1989 (1997).
  35. S. Hayashi and K. Kuchitsu, Chem. Phys. Lett. 41, 575 (1976).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited