OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 4, Iss. 6 — Jun. 10, 2006
  • pp: 311–314

Quantum spectra and classical periodic orbit in the cubic billiard

Dehua Wang, Yongjiang Yu, and Shenglu Lin  »View Author Affiliations

Chinese Optics Letters, Vol. 4, Issue 6, pp. 311-314 (2006)

View Full Text Article

Acrobat PDF (370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.

© 2006 Chinese Optics Letters

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(070.2590) Fourier optics and signal processing : ABCD transforms
(300.0300) Spectroscopy : Spectroscopy
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Dehua Wang, Yongjiang Yu, and Shenglu Lin, "Quantum spectra and classical periodic orbit in the cubic billiard," Chin. Opt. Lett. 4, 311-314 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Cserti, A. Kormanyos, Z. Kaufmann, and C. J. Lambert, Phys. Rev. Lett. 89, 057001 (2002).
  2. H. J. Stockmann and J. Stein, Phys. Rev. Lett. 64, 2215 (1990).
  3. C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins, and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).
  4. N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, Phys. Rev. Lett. 86, 1518 (2001).
  5. C. Zhang, J. Liu, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 93, 074101 (2004).
  6. P. Cvitanovic, Chaos 2, 1 (1992).
  7. D. L. Aronstein and C. R. Stroud, Phys. Rev. A 55, 4526 (1997).
  8. R. W. Robinett and S. Heppelmann, Phys. Rev. A 65, 062103 (2002).
  9. M. A. Doncheski and R. W. Robinett, Annals of Physics 299, 208 (2002).
  10. R. W. Robinett, Surface Rev. and Lett. 5, 519 (1998).
  11. R. W. Robinett, Am. J. Phys. 67, 67 (1999).
  12. S. M. Reimann, M. Brack, A. G. Magner, and M. V. N. Murthy, Phys. Rev. A 53, 39 (1996).
  13. R. W. Robinett, J. Math. Phys. 39, 278 (1998).
  14. L. Christensson, H. Linke, and P. Omling, Phys. Rev. B 57, 12306 (1998).
  15. I. Zozoulenko, R. Schuster, K.-F. Berggren, and K. Ensslin, Phys. Rev. B 55, 10209 (1997).
  16. I. Sh. Averbukh, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys. Rev. Lett. 77, 3518 (1996).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited