OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 4, Iss. 6 — Jun. 10, 2006
  • pp: 353–356

Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs

Rongjin Yan and Qingkang Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 4, Issue 6, pp. 353-356 (2006)

View Full Text Article

Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced" and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced, and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tin-oxide/glass interfaces.

© 2006 Chinese Optics Letters

OCIS Codes
(160.4670) Materials : Optical materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices

Rongjin Yan and Qingkang Wang, "Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs," Chin. Opt. Lett. 4, 353-356 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. G. Malliaras and J. C. Scott, J. Appl. Phys. 85, 7426 (1999).
  2. B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, C. J. Neef, and J. P. Ferraris, J. Appl. Phys. 86, 5767 (1999).
  3. D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 74, 442 (1999).
  4. B. Chen, Y. Liu, C. S. Lee, G. Yu, S. T. Lee, H. Li, W. A. Gambling, D. Zhu, H. Tian, and W. Zhu, Thin Solid Films 363, 173 (2000).
  5. Y. Kawabe, G. E. Jabbour, S. E. Shaheen, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1290 (1997).
  6. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
  7. P. W. M. Blom, M. C. J. M. Vissenberg, J. N. Huiberts, H. C. F. Martens, and H. F. M. Schoo, Appl. Phys. Lett. 77, 2057 (2000).
  8. R. W. T. Higgins, A. P. Monkman, H.-G. Nothofer, and U. Scherf, J. Appl. Phys. 91, 99 (2002).
  9. H. Becker, S. E. Burns, and R. H. Friend, Phys. Rev. B 56, 1893 (1997).
  10. T. Tsutsui, N. Takada, S. Saito, and E. Ogino, Appl. Phys. Lett. 65, 1868 (1994).
  11. A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, Appl. Phys. Lett. 64, 2486 (1994).
  12. R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Dohler, B. Dutta, and G. Borghs, Appl. Phys. Lett. 74, 2256 (1999).
  13. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett. 22, 396 (1997).
  14. C. F. Madigan, M.-H. Lu, and J. C. Sturm, Appl. Phys. Lett. 76, 1650 (2000).
  15. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Adv. Mater. 13, 1149 (2001).
  16. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, Phys. Rev. Lett. 78, 3294 (1997).
  17. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
  18. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, Appl. Phys. Lett. 82, 3779 (2003).
  19. H.-Y. Ryu, J.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, IEEE J. Sel. Top. Quantum Electron. 8, 231 (2002).
  20. J. Song, Y. Fu, Y. Liu, Y. Chang, B. Kang, X. Li, and G. Du, Semiconductor Optoelectronics (in Chinese) 21, 214 (2000).
  21. M. Kitamura, S. Iwamoto, and Y. Arrakawa, Jpn. J. Appl. Phys. 44, 2844 (2005).
  22. K. Yee, IEEE Trans. Antennas Propagat. 14, 302 (1966).
  23. O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 16, 276 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited