OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. S1 — May. 31, 2007
  • pp: S204–S206

Upconversion luminescence of single-crystalline ZnO by femtosecond laser irradiation

Xinshun Wang, Juan Song, Haiyi Sun, Zhizhan Xu, and Jianrong Qiu  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue S1, pp. S204-S206 (2007)

View Full Text Article

Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Near infrared to ultraviolet (UV) and visible upconversion luminescence was observed in ZnO single crystalline under femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and visible emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon simultaneous band-to-band excitation and the visible emission belongs to two-photon simultaneous defect-absorption-induced luminescence. The saturation effects are also found in the upconversion process of ZnO.

© 2007 Chinese Optics Letters

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.2530) Spectroscopy : Fluorescence, laser-induced
(320.2250) Ultrafast optics : Femtosecond phenomena

Xinshun Wang, Juan Song, Haiyi Sun, Zhizhan Xu, and Jianrong Qiu, "Upconversion luminescence of single-crystalline ZnO by femtosecond laser irradiation," Chin. Opt. Lett. 5, S204-S206 (2007)

Sort:  Year  |  Journal  |  Reset


  1. L. F. Johnson and G. J. Guggenheim, Appl. Phys. Lett. 19, 44 (1971).
  2. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
  3. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, Science 273, 1185 (1996).
  5. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, Nature 398, 51 (1999).
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 97 (2001).
  7. G. S. He, C. Weder, P. Smith, and P. N. Prasad, IEEE J. Quantum Electron. 34, 2279 (1998).
  8. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
  9. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
  10. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, Opt. Express 13, 9235 (2005).
  11. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
  12. H.-J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996).
  13. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B 57, 12151 (1998).
  14. R. P. Chin, Y. R. Shen, and V. Petrova-Koch, Science 270, 776 (1995).
  15. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qian, H. Deng, H. Cheng, and J. C. Wang, Appl. Phys. Lett. 89, 042117 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited