Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 5,
  • Issue S1,
  • pp. S268-S271
  • (2007)

Sub-wavelength atom localization in double-dark resonant systems

Not Accessible

Your library or personal account may give you access

Abstract

We propose two schemes of atom localization based on the interference of double-dark resonances in a tripod and a 'Lambda'-type four-level system. It is demonstrated that the localization is significantly improved owing to the interference of double-dark resonances. In the tripod scheme, the localization can be manipulated by the parameters of an additional control field. Via adjusting the Rabi frequency of the field, one can double the probability of detecting the atom within subwavelength domain. By decreasing the detuning of the field, higher spatial resolution can be achieved. In the 'Lambda'-type four-level system, via adjusting the probe field detuning, we can not only make the atom localized at the nodes of the standing-wave field with high precision, but also increase the detecting probability of the atom at a particular position by a factor of 2.

© 2007 Chinese Optics Letters

PDF Article
More Like This
Controllable atom localization via double-dark resonances in a tripod system

Dong-chao Cheng, Yue-ping Niu, Ru-xin Li, and Shang-qing Gong
J. Opt. Soc. Am. B 23(10) 2180-2184 (2006)

Two-dimensional atom localization via interacting double-dark resonances

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao
J. Opt. Soc. Am. B 28(4) 622-628 (2011)

Effect of nearby levels on atom localization in the Ξ atomic system via spatial dependent probe absorption

Neeraj Singh, Raj Kumar, and Ajay Wasan
OSA Continuum 2(3) 862-873 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.