OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. 12 — Dec. 10, 2007
  • pp: 690–692

Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps

Tianbao Yu, Xiaoqing Jiang, Qinghua Liao, Wei Qi, Jianyi Yang, and Minghua Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue 12, pp. 690-692 (2007)

View Full Text Article

Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The properties of the propagating field in multimode photonic crystal waveguides (PCWs) exhibiting no photonic band gaps (PBGs) are investigated. The transmission spectrum shows that the input field can be guided with high efficiency, and resemble index-guided modes owing to the combination of total internal reflection (TIR) and distributed Bragg reflection (DBR). Self-imaging effect happens and the filling fraction determines the beating lengths. The rows of air holes decide DBR coming from the mirrors on both sides of the guiding region, which governs the transmission spectrum. It provides a new way to realize the components for both polarizations by combining PBG and TIR effects in PCWs.

© 2007 Chinese Optics Letters

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves

Tianbao Yu, Xiaoqing Jiang, Qinghua Liao, Wei Qi, Jianyi Yang, and Minghua Wang, "Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps," Chin. Opt. Lett. 5, 690-692 (2007)

Sort:  Year  |  Journal  |  Reset


  1. C. M. Soukoulis, Photonic Band Gaps and Localization (Plenum, New York, 1993).
  2. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
  3. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, Phys. Rev. B 64, 033308 (2001).
  4. P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, Y. X. Zhuang, M. Kristensen, and H. M. H. Chong, Opt. Express 11, 1757 (2003).
  5. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, IEEE Photon. Technol. Lett. 17, 1435 (2005).
  6. T.-B. Yu, X.-Q. Jiang, J.-Y. Yang, H.-F. Zhou, Q.-H. Liao, and M.-H. Wang, Phys. Lett. A 369, 167 (2007).
  7. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
  8. H.-J. Kim, I. Park, B.-H. O, S.-G. Park, E.-H. Lee, S.-G. Lee, Opt. Express 12, 5625 (2004).
  9. D. Modotto, M. Conforti, A. Locatelli, and C. D. Angelis, J. Lightwave Technol. 25, 402 (2007).
  10. T.-B. Yu, M.-H. Wang, X.-Q. Jiang, Q.-H. Liao, and J.-Y. Yang, J. Opt. A 9, 37 (2007).
  11. M. Qiu, Appl. Phys. Lett. 81, 1163 (2002).
  12. Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, IEEE J. Quantum Electron. 41, 76 (2005).
  13. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd end.) (Artech House, Boston, 2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited