OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. 12 — Dec. 10, 2007
  • pp: 712–714

Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films

Hongxiang Song and Chengxun Wu  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue 12, pp. 712-714 (2007)

View Full Text Article

Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Electro-optic (EO) effect and thermo-optic (TO) effect are jointly considered on the basis of field-induced and temperature-affected perturbations of the operating point in waveguide components. TO coefficients of EO fluorinated polyimide films with side-chain azobenzene chromophore were measured by attenuated-total-reflection (ATR) technique at different temperatures with TE- and TM-polarized lights, respectively. It is found that the absolute values of TO coefficients increase with the increments of both chromophore concentration and film thickness, but the polarization dependence of TO coefficients increases with the increment of chromophore concentration and decreases with the increment of film thickness.

© 2007 Chinese Optics Letters

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.6840) Materials : Thermo-optical materials
(190.4870) Nonlinear optics : Photothermal effects
(310.6860) Thin films : Thin films, optical properties

Hongxiang Song and Chengxun Wu, "Effects of chromophore concentration and film thickness on thermo-optic properties of electro-optic fluorinated polyimide films," Chin. Opt. Lett. 5, 712-714 (2007)

Sort:  Year  |  Journal  |  Reset


  1. P. Gunter, Nonlinear Optical Effects and Materials (Springer, Berlin, 2000) p.1.
  2. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
  3. S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, Prog. Polym. Sci. 29, 45 (2004).
  4. S. S. Sarkisov, C. Walton, M. J. Curley, L. Yarovoi, and J.-C. Wang, Proc. SPIE 4991, 589 (2003).
  5. L. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, Ind. Eng. Chem. Res. 38, 8 (1999).
  6. G. Gorachand, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, 1997) pp.115-117.
  7. T. Yoshiharu and A. Shinji, Proc. SPIE 5724, 336 (2005).
  8. H. L. Saadon, N. Theofanous, M. Aillerie, and M. D. Fontana, Appl. Phys. B 83, 609 (2006).
  9. M. B. J. Diemeer, Opt. Mater. 9, 192 (1998).
  10. X. J. Lu, D. C. An, L. Sun, Q. J. Zhou, and R. T. Chen, Appl. Phys. Lett. 76, 2155 (2000).
  11. X. Li, Z. Q. Cao, Q. S. Shen, and Y. F. Yang, Mater. Lett. 60, 1238 (2006).
  12. H. X. Song, C. X. Wu, B. Zhu, Z. Q. Cao, and X. X. Deng, in Proceedings of ICAFPM 231 (2005).
  13. D. W. V. Krevelen, Properties of Polymers (Elsevier, London, 1997) p.287.
  14. M. Osterfeld and H. Franke, Appl. Phys. A 58, 589 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited