OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 5, Iss. 8 — Aug. 10, 2007
  • pp: 445–448

Performance comparison between sampling methods using DOP as feedback signal for higher-order PMD compensator

Min Yao, Huanyou Wang, and Lin Chen  »View Author Affiliations


Chinese Optics Letters, Vol. 5, Issue 8, pp. 445-448 (2007)


View Full Text Article

Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We numerically analyzed the performance of the two polarization-mode dispersion (PMD) compensation methods of the single degree of polarization (DOP) sampling and DOP ellipsoid sampling methods. The numerical results show that the single DOP sampling method can generate the maximum DOP, and may result in a small overall differential group delay (DGD) or the principal state of polarization (PSP) launching. By the PSP launching, just the first-order PMD is compensated while second-order PMD not. When the DOP ellipsoid sampling method is used the performance is evidently better, because the effect of high-order PMD on PMD compensation is reduced.

© 2007 Chinese Optics Letters

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications

Citation
Min Yao, Huanyou Wang, and Lin Chen, "Performance comparison between sampling methods using DOP as feedback signal for higher-order PMD compensator," Chin. Opt. Lett. 5, 445-448 (2007)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-5-8-445


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Buchali and H. Buow, J. Lightwave Technol. 22, 1116 (2004).
  2. L. Xi, X. Zhang, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 262 (2004).
  3. X. Zhang, L. Xi, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 316 (2004).
  4. T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).
  5. F. Buchali, S. Lanne, J.-P. Thiery, and W. Baumert, in Proceedings of OFC'2001 Tup5-1 (2001).
  6. Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).
  7. J. C. Rasmussen, A. Isomura, and G. Ishikawa, J. Lightwave Technol. 20, 2101 (2002).
  8. H. Rosenfeldt, C. Knothe, U. R. Brinkmeyer, and E. Feiste, in Tech. Dig. OFC'2001 PD27-1 (2001).
  9. C. Xie, L. Moller, R. M. Jopson, and A. H. Gnauck, in Proceedings of OFC'2004 WE4 (2004).
  10. C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).
  11. C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
  12. J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).
  13. Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).
  14. K. Nobuhiko, J. Lightwave Technol. 19, 480 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited