OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. S1 — May. 31, 2007
  • pp: S145–S147

Vertical cavity surface emitting lasers fabricated with pulsed anodic oxidation

Jinjiang Cui, Yongqiang Ning, Yanfang Sun, Te Li, Guangyu Liu, Yan Zhang, Biao Peng, and Lijun Wang  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue S1, pp. S145-S147 (2007)

View Full Text Article

Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The technique of pulsed anodic oxidation is adopted in the fabrication of 980-nm bottom-emitting vertical-cavity surface-emitting lasers. A high-quality native oxide current blocking layer is formed with this method. A significant reduction of threshold current and a distinguished device performance are achieved. The threshold current of large aperture devices with active diameter up to 400 microns is as low as 0.45 A at room temperature, which is substantially lower than the lasers fabricated by SiO2 sputtering. The maximum continuous-wave output power is 0.83 W. The lasing peak wavelength is 990.2 nm, and the full width at half-maximum is 0.9 nm. Low lateral divergence angle of 15.3 deg. and vertical divergence angle of 13.8 deg. are obtained.

© 2007 Chinese Optics Letters

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

Jinjiang Cui, Yongqiang Ning, Yanfang Sun, Te Li, Guangyu Liu, Yan Zhang, Biao Peng, and Lijun Wang, "Vertical cavity surface emitting lasers fabricated with pulsed anodic oxidation," Chin. Opt. Lett. 5, S145-S147 (2007)

Sort:  Year  |  Journal  |  Reset


  1. D. L. Hiffaker, J. Shin, H. Deng, C. C. Lin, D. G. Deppe, and B. G. Streetman, Appl. Phys. Lett. 65, 2642 (1994).
  2. R. P. Schneider, Jr. and J. A. Lott, Appl. Phys. Lett. 63, 917 (1993).
  3. I. Burgaftman, J. R. Meyer, and L. R. Ram-Mohan, IEEE J. Quantum Electron. 34, 147 (1998).
  4. Koeth, R. Dietrich, and A. Forchel, Appl. Phys. Lett. 72, 1638 (1998).
  5. P. Schnitzer, M. Grabherr, R. Jager, F. Mederer, R. Michalzik, D. Wiedenmann, and K. J. Ebeling, IEEE Photon. Technol. Lett. 11, 767 (1999).
  6. H. K. Shin, I. Kim, E. J. Kim, J. H. Kim, E. K. Lee, M. K. Lee, J. K. Mum, C. S. Park, and Y. S. I, Jpn. J. Appl. Phys. 35, 506 (1996).
  7. J. C. Dyment, Appl. Phys. Lett. 10, 84 (1967).
  8. J. H. Marsh, Semiconduct. Sci. Technol. 8, 1136 (1993).
  9. S. Yuan, Y. Kim, C. Jagadish, P. T. Burke, M. Gal, J. Zou, D. Q. Cai, D. J. H. Cockayne, and R. M. Cohen, Appl. Phys. Lett. 70, 1269 (1997).
  10. C. C. Largent, M. J. Grove, D. A. Hudson, P. S. Zory, and D. P. Bour, Solid-State Electron. 38, 1893 (1995).
  11. H. Hasegawa and H. L. Hartnagel, J. Electrochem. Soc. 123, 713 (1976).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited