OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 5, Iss. S1 — May. 31, 2007
  • pp: S218–S221

Self-organized void strings induced in SrTiO3 crystal by a femtosecond laser

Juan Song, Haiyi Sun, Xinshun Wang, Jian Xu, Jianrong Qiu, and Zhizhan Xu  »View Author Affiliations

Chinese Optics Letters, Vol. 5, Issue S1, pp. S218-S221 (2007)

View Full Text Article

Acrobat PDF (236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Densely-aligned void arrays of the length of hundreds of micrometers are fabricated in SrTiO3 crystal by tightly focusing multiple femtosecond (fs) pulses and fixing the focal point at a certain depth of SrTiO3 crystal without translation. The effect of the laser energy and the laser irradiation time as the well as entrance crystal plane on the induced structures is investigated. It is possible to control these factors to achieve the desirable void strings. This kind of self-fabrication method combined with the high linear refractive index of SrTiO3 (2.30 at 800 nm) largely extends the fabrication scope which is generally limited by the short working distance of the high numerical aperture (NA) objective lens in scanning fabrication mode. The possible formation mechanism is also discussed.

© 2007 Chinese Optics Letters

OCIS Codes
(160.4670) Materials : Optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(210.4810) Optical data storage : Optical storage-recording materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4000) Optical devices : Microstructure fabrication

Juan Song, Haiyi Sun, Xinshun Wang, Jian Xu, Jianrong Qiu, and Zhizhan Xu, "Self-organized void strings induced in SrTiO3 crystal by a femtosecond laser," Chin. Opt. Lett. 5, S218-S221 (2007)

Sort:  Year  |  Journal  |  Reset


  1. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, Appl. Phys. Lett. 80, 353 (2002).
  2. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, Appl. Phys. B 77, 959 (2003).
  3. T. Hashimoto, S. Juodkazis, and H. Misawa, Appl. Phys. A 83, 337 (2006).
  4. K. Kawamura, T. Ogawa, N. Sarukur, M. Hirano, and H. Hosono, Appl. Phy. B 71, 119 (2001).
  5. S. Kanebira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, Nano. Lett. 5, 1591 (2005).
  6. E. Toratani, M. Kamata, and M. Obara, Appl. Phys. Lett. 87, 171103 (2005).
  7. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
  8. L. Luo, D. L. Wang, C. D. Li, H. B. Jiang, H. Yang, and Q. H. Gong, J. Opt. A 4, 105 (2002).
  9. R. R. Gattass, L. R. Cerami, and E. Mazur, Opt. Express 14, 5279 (2006).
  10. K. A. Nowakowski, "Laser beam interaction with materials for microscale applications" (Ph.D. dissertation, Worcester Polytechnic Institute, 2005).
  11. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. V. Hulst, and L. Kuiperis, Phys. Rev. Lett. 92, 183901 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited