Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 6,
  • Issue 1,
  • pp. 71-73
  • (2008)

Growth and characterization of InAs quantum dots with low-density and long emission wavelength

Not Accessible

Your library or personal account may give you access

Abstract

The growth parameters affecting the deposition of self-assembled InAs quantum dots (QDs) on GaAs substrate by low-pressure metal-organic chemical vapor deposition (MOCVD) are reported. The low-density InAs QDs (~5×10^8 cm^(-2) are achieved using high growth temperature and low InAs coverage. Photoluminescence (PL) measurements show the good optical quality of low-density QDs. At room temperature, the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1361 nm and 23 meV (35 nm), respectively, which are obtained as the GaAs capping layer grown using triethylgallium (TEG) and tertiallybutylarsine (TBA). The PL spectra exhibit three emission peaks at 1361, 1280, and 1204 nm, which correspond to the ground state, the first excited state, and the second excited state of the QDs, respectively.

© 2008 Chinese Optics Letters

PDF Article
More Like This
Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

Influence of Bi on morphology and optical properties of InAs QDs

Lijuan Wang, Wenwu Pan, Xiren Chen, Xiaoyan Wu, Jun Shao, and Shumin Wang
Opt. Mater. Express 7(12) 4249-4257 (2017)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved