Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 6,
  • Issue 10,
  • pp. 727-731
  • (2008)

Quantum dot lasers and integrated optoelectronics on silicon platform: Invited Paper

Not Accessible

Your library or personal account may give you access

Abstract

Chip-scale integration of optoelectronic devices such as lasers, waveguides, and modulators on silicon is prevailing as a promising approach to realize future ultrahigh speed optical interconnects. We review recent progress of the direct epitaxy and fabrication of quantum dot (QD) lasers and integrated guided-wave devices on silicon. This approach involves the development of molecular beam epitaxial growth of self-organized QD lasers directly on silicon substrates and their monolithic integration with amorphous silicon waveguides and quantum well electroabsorption modulators. Additionally, we report a preliminary study of long-wavelength (>1.3 µm) Q D lasers grown on silicon and integrated crystalline silicon waveguides using membrane transfer technology.

© 2008 Chinese Optics Letters

PDF Article
More Like This
Quantum dot lasers for silicon photonics [Invited]

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, and John E. Bowers
Photon. Res. 3(5) B1-B9 (2015)

InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration

Wen-Qi Wei, Qi Feng, Jing-Jing Guo, Ming-Chen Guo, Jian-Huan Wang, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang
Opt. Express 28(18) 26555-26563 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.