OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 6, Iss. 10 — Oct. 1, 2008
  • pp: 743–747

Single-mode and tunable VCSELs in the near- to mid-infrared

Markus-Christian Amann and Werner Hofmann  »View Author Affiliations


Chinese Optics Letters, Vol. 6, Issue 10, pp. 743-747 (2008)


View Full Text Article

Acrobat PDF (1101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Single-mode, long-wavelength vertical-cavity surface-emitting lasers (VCSELs) in the near- to mid-infrared covering the wavelength range from 1.3 to 2.3 are presented. This wide spectral emission range opens applications in gas sensing and optical interconnects. All these lasers are monolithically grown in the InGaAlAs-InP material system utilizing a buried tunnel junction (BTJ) as current aperture. Fabricated with a novel high-speed design with reduced parasitics, bandwidths in excess of 10 GHz at 1.3 and 1.55 µm have been achieved. Therefore, the coarse wavelength division multiplexing (CWDM) wavelength range of 1.3 to 1.6 µm at 10 Gb/s can be accomplished with one technology. Error-free data-transmission at 10 Gb/s over a fiber link of 20 km is demonstrated. One-dimensional arrays have been fabricated with emission wavelengths addressable by current tuning. Micro-electro-mechanical system (MEMS) tunable devices provide an extended tuning range in excess of 50 nm with high spectral purity. All these devices feature continuous-wave (CW) operation with typical single-mode output powers exceeding 1 mW. The operation voltage is around 1-1.5 V and power consumption is as low as 10-20 mW. Furthermore, we have also developed VCSELs based on GaSb, targeting at the wavelength range from 2.3 to 3.0 µm. The functionality of tunable diode laser spectroscopy (TDLS) systems is shown by presenting a laser hygrometer applying a 1.84-µm VCSEL.

© 2008 Chinese Optics Letters

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

Citation
Markus-Christian Amann and Werner Hofmann, "Single-mode and tunable VCSELs in the near- to mid-infrared," Chin. Opt. Lett. 6, 743-747 (2008)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-10-743


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Iga, IEEE J. Sel. Top. Quantum Electron. 6, 1201 (2000).
  2. F. Koyama, J. Lightwave Technol. 24, 4502 (2006).
  3. R. Shau, M. Ortsiefer, J. Rosskopf, G. Bohm, C. Lauer, M. Maute, and M.-C. Amann, Proc. SPIE 5364, 1 (2004).
  4. M. Ortsiefer, M. Grau, J. Rosskopf, R. Shau, K. Windhorn, E. Ronneberg, G. Bohm, W. Hofmann, O. Dier, and M.-C. Amann, IEEE 20 th International Semiconductor Laser Conference 113 (2006).
  5. M. Ortsiefer, S. Baydar, K. Windhorn, G. Bohm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, IEEE Photon. Technol. Lett. 17, 1596 (2005).
  6. J. Boucart, G. Suruceanu, P. Royo, V. I. Iakovlev, A. Syrbu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Rudra, and E. Kapon, IEEE Photon. Technol. Lett. 18, 571 (2006).
  7. C.-K. Lin, D. P. Bour, J. Zhu, W. H. Perez, M. H. Leary, A. Tandon, S. W. Corzine, and M. R. T. Tan, IEEE J. Sel. Top. Quantum Electron. 9, 1415 (2003).
  8. A. Ramakrishnan, G. Steinle, D. Supper, C. Degen, and G. Ebbinghaus, Electron. Lett. 38, 322 (2002).
  9. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, Electron. Lett. 42, 976 (2006).
  10. M. Yamada, T. Anan, H. Hatakeyama, K. Tokutome, N. Suzuki, T. Nakamura, and K. Nishi, IEEE Photon. Technol. Lett. 17, 950 (2005).
  11. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, IEEE J. Sel. Top. Quantum Electron. 11, 990 (2005).
  12. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, IEEE Photon. Technol. Lett. 17, 947 (2005).
  13. C. Lauer, S. Szalay, G. Bohm, F. Kohler, and M.-C. Amann, IEEE Trans. Inst. Meas. 54, 1214 (2005).
  14. G. Bohm, M. Grau, O. Dier, K. Windhorn, E. Ronneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, and M.-C. Amann, J. Crys. Growth 301-302, 941 (2007).
  15. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, and M.-C. Amann, Opt. Lett. 33, 1566 (2008).
  16. A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, Electron. Lett. 44, 202 (2008).
  17. M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, IEEE Photon. Technol. Lett. 18, 688 (2006).
  18. H. P. Huang, N. H. Zhu, and J. Liu, IEEE Photon. Technol. Lett. 17, 2155 (2005).
  19. L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, J. Sel. Top. Quantum Electron. 13, 1200 (2007).
  20. W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and M. C. Amann, IEEE Photon. Technol. Lett. 20, 291 (2008).
  21. E. Wong, X. Zhao, C. J. Chang-Hasnain, W. Hofmann, and M.-C. Amann, IEEE Photon. Technol. Lett. 18, 2371 (2006).
  22. X. Zhao, Y. Zhou, C. J. Chang-Hasnain, W. Hofmann, and M.-C. Amann, Opt. Express 14, 10500 (2006).
  23. F. Fidler, C. Hambeck, P. J. Winzer, and W. R. Leeb, in Proceedings of European Conference on Optical Communication (ECOC) 3, 521 (2006).
  24. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, J. Lightwave Technol. 23, 3566 (2005).
  25. Q. Gu, W. Hofmann, M.-C. Amann, and L. Chrostowski, IEEE Photon. Technol. Lett. 20, 463 (2008).
  26. M. Maute, G. Bohm, M.-C. Amann, B. Kogel, H. Halbritter, and P. Meissner, Opt. Express 13, 8008 (2005).
  27. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, J. Quantum Spectrosc. Radiat. Transfer 82, 5 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited