OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters


  • Vol. 6, Iss. 11 — Nov. 1, 2008
  • pp: 800–803

Influence of laser intensity on the double-resonance multiphoton ionization process of NO molecule

Guiyin Zhang and Yidong Jin  »View Author Affiliations

Chinese Optics Letters, Vol. 6, Issue 11, pp. 800-803 (2008)

View Full Text Article

Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The analytic formula of the ionization efficiency in the process of double resonance enhanced multi-photon ionization (DREMPI) is derived from the dynamic rate equation about the interaction of photon and material. Based on this formula, the ionization efficiency and the laser power index versus laser intensity in the DREMPI process of NO molecule, via A2\sum and S2\sum intermediate resonant states, is numerically simulated. It is shown that the ionization efficiency of NO molecule increases with the laser intensity until getting saturation, while the laser power index decreases with the enhancement of the laser intensity and changes to zero at last. The variation of the laser power index with the laser intensity indicates that the ionization efficiency reaches saturation in the one, two, and three excitation steps respectively. It is also found that the narrower the laser pulse duration is, the higher becomes the laser intensity for saturation.

© 2008 Chinese Optics Letters

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(260.5210) Physical optics : Photoionization

Guiyin Zhang and Yidong Jin, "Influence of laser intensity on the double-resonance multiphoton ionization process of NO molecule," Chin. Opt. Lett. 6, 800-803 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Wang, S. Cong, K. Yuan, and Y. Niu, Chem. Phys. Lett. 417, 164 (2006).
  2. G. Zhang and Y. Jin, Chin. Opt. Lett. 5, 249 (2007).
  3. G. Zhang, Y. Jin, and L. Zhang, Chin. Opt. Lett. 4, 439 (2006).
  4. X. Wang, G. Yao, X. Zhang, X. Xu, E. Feng, J. Han, and Z. Cui, Chinese J. Lasers (in Chinese) 32, 1211 (2005).
  5. G. Yao, X. Wang, C. Du, H. Li, X. Zhang, X. Zheng, H. Ji, and Z. Cui, Acta Phys. Sin. (in Chinese) 55, 2210 (2006).
  6. L. Zhang, G. Zhang, X. Yang, Y. Li, and X. Zhao, Chin. Opt. Lett. 1, 190 (2003).
  7. G. Zhang, L. Zhang, X. Yang, B. Sun, and X. Zhao, J. Optoelectron.Laser (in Chinese) 15, 492 (2004).
  8. G. Zhang, L. Zhang, X. Yang, B. Sun, and X. Zhao, Acta Opt. Sin. (in Chinese) 24, 718 (2004).
  9. P. Cremaschi, P. M. Johnson, and J. L. Whitten, J. Chem. Phys. 69, 4341 (1978).
  10. R. L. Pasel and R. C. Sausa, Appl. Opt. 39, 2487 (2000).
  11. W. Guo, J. Wei, B. Zhang, L. Fang, and J. Cai, Chin. J. Quant. Electron. (in Chinese) 14, 130 (1997).
  12. W. Guo, W. Yuan, S. Zhang, L. Fang, J. Wei, L. Zhang, B. Zhang, and J. Cai, Chinese J. Lasers (in Chinese) 26, 519 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited