OSA's Digital Library

Chinese Optics Letters

Chinese Optics Letters

| PUBLISHED MONTHLY BY CHINESE LASER PRESS AND DISTRIBUTED BY OSA

  • Vol. 6, Iss. 4 — Apr. 1, 2008
  • pp: 268–270

810-nm InGaAlAs/AlGaAs double quantum well semiconductor lasers with asymmetric waveguide structures

Lin Li, Guojun Liu, Zhanguo Li, Mei Li, Xiaohua Wang, Hui Li, and and Chunming Wan  »View Author Affiliations


Chinese Optics Letters, Vol. 6, Issue 4, pp. 268-270 (2008)


View Full Text Article

Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conversion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm^2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm^(-1) and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns.

© 2008 Chinese Optics Letters

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(310.1860) Thin films : Deposition and fabrication

Citation
Lin Li, Guojun Liu, Zhanguo Li, Mei Li, Xiaohua Wang, Hui Li, and and Chunming Wan, "810-nm InGaAlAs/AlGaAs double quantum well semiconductor lasers with asymmetric waveguide structures," Chin. Opt. Lett. 6, 268-270 (2008)
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-4-268


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Jager, J. Heerlein, E. Deichsel, and P. Unger, J. Cryst. Growth 201/202, 882 (1999).
  2. M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, Electron. Lett. 41, 245 (2005).
  3. I. S. Tarasov, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, D. A. Vinokurov, K. S. Borschev, V. A. Kapitonov, M. A. Khomylev, A. Yu. Leshko, A. V. Lyutetskiy, and A. L. Stankevich, Spectrochimica Acta A 66, 819 (2007).
  4. F. Bachmann, Appl. Surf. Sci. 208~209, 125 (2003).
  5. M. A. Emanuel, N. W. Carlson, and J. A. Skidmore, IEEE Photon. Technol. Lett. 8, 1291 (1996).
  6. J. Wang, B. Smith, X. Xie, X. Wang, and G. T. Burnham, Appl. Phys. Lett. 74, 1525 (1999).
  7. K. Shigihara, K. Kawasaki, Y. Yoshida, S. Yamamura, T. Yagi, and E. Omura, IEEE J. Quantum Electron. 38, 1081 (2002).
  8. B. S. Ryvkin and E. A. Avrutin, IEE Proc.-Optoelectron. 151, 232 (2004).
  9. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 98, 026107 (2005).
  10. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97, 123103 (2005).
  11. D. P. Bour and A. Rosen, J. Appl. Phys. 66, 2813 (1989).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited