Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 6,
  • Issue 6,
  • pp. 449-453
  • (2008)

Rlationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter

Not Accessible

Your library or personal account may give you access

Abstract

The sensitivity of Doppler wind lidar is an important parameter which affects the performance of Doppler wind lidar. Aerosol scattering ratio, atmospheric temperature, and wind speed obviously affect the measurement of Doppler wind lidar with iodine filter. We discuss about the relationship between the measurement sensitivity and the above atmospheric parameters. The numerical relationship between them is given through the theoretical simulation and calculation.

© 2008 Chinese Optics Letters

PDF Article
More Like This
Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter

Zhi-Shen Liu, Dong Wu, Jin-Tao Liu, Kai-Lin Zhang, Wei-Biao Chen, Xiao-Quan Song, Johnathan W. Hair, and Chiao-Yao She
Appl. Opt. 41(33) 7079-7086 (2002)

Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods

Chiao-Yao She, Jia Yue, Zhao-Ai Yan, Johnathan W. Hair, Jin-Jia Guo, Song-Hua Wu, and Zhi-Shen Liu
Appl. Opt. 46(20) 4444-4454 (2007)

Direct-detection Doppler wind measurements with a Cabannes–Mie lidar: A. Comparison between iodine vapor filter and Fabry–Perot interferometer methods

Chiao-Yao She, Jia Yue, Zhao-Ai Yan, Johnathan W. Hair, Jin-Jia Guo, Song-Hua Wu, and Zhi-Shen Liu
Appl. Opt. 46(20) 4434-4443 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.